手铐
链接:https://ac.nowcoder.com/acm/problem/14394来源:牛客网
题目描述
给你一个连通无向图,保证每个点最多属于一个简单环,每个点度数最多为3,求这个图有多少“手铐图形个数”
其中“手铐图形个数”,定义为三元组(x,y,S),其中x和y表示图上的两个点,S表示一条x到y的简单路径,而且必须满足:
1.x和y分别在两个不同的简单环上
2.x所在的简单环与路径S的所有交点仅有x,y所在的简单环与路径S的所有交点仅有y。
(x,y,S)与(y,x,S)算同一个手铐
如果你无法理解,可以参考样例。
输入描述:
第一行两个数n和m之后m行,每行两个数x,y表示x和y之间有一条边。
输出描述:
输出一个数,表示手铐的个数对19260817取模的结果
输入
14 16
1 2
2 3
3 4
4 1
3 5
5 6
6 7
7 8
8 9
9 6
9 13
13 14
13 10
10 11
11 12
12 10
输出
4
备注:
n <= 1000000
m <= 2000000
解析
tarjan缩点(双连通分量),然后建新图,由题意易知新图是一颗树,然后再进行树形dp
DP
对每个环认为是方点进行标记,普通点为圆点
f[x]表示以x点位节点的半个手铐有多少个
if(x方点)f[x]=f[x]+f[y]*2;
if(x圆点)f[x]=f[x]+f[y];
ans[x]表示x为节点的手铐数,y是子节点
ans[x]=ans[x]+f[x]*f[y]+ans[y];
读入应该改快读
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<map>
#include<iomanip>
#include<vector>
#define LL long long
#define INF 0x7fffffff/2
#define MAXN 1000005
#define mod 19260817
using namespace std;
vector<int>e[MAXN],w[MAXN];
int scc=0,top=0,sign=0;
int belong[MAXN],num[MAXN],stk[MAXN],ins[MAXN];
int low[MAXN],dfn[MAXN];
int N,M;
LL f[MAXN],ans[MAXN];
struct Edge{
int x,y;
}edge[2*MAXN];
void Tarjan(int x,int fa)
{
dfn[x]=low[x]=++sign;
stk[++top]=x;
ins[x]=1;
for(int i=0;i<e[x].size();i++)
{
int y=e[x][i];
if(y==fa)continue;
if(!dfn[y])
{
Tarjan(y,x);
low[x]=min(low[x],low[y]);
}
else if(ins[y])low[x]=min(low[x],dfn[y]);
}
if(dfn[x]==low[x])
{
scc++;
int t;
do{
t=stk[top--];
ins[t]=0;
belong[t]=scc;
num[scc]++;
}while(t!=x);
}
}
void DFS_dp(int x,int fa)
{
ans[x]=0;
if(num[x]>1)f[x]=1;
else f[x]=0;
for(int i=0;i<w[x].size();i++)
{
int y=w[x][i];
if(y==fa)continue;
DFS_dp(y,x);
ans[x]=(ans[x]+f[x]*f[y]%mod+ans[y])%mod;
if(num[x]>1)f[x]=(f[x]+f[y]*2)%mod;
else f[x]=(f[x]+f[y])%mod;
}
}
int main()
{
scanf("%d%d",&N,&M);
int x,y;
for(int i=1;i<=M;i++)
{
scanf("%d%d",&x,&y);
edge[i]=(Edge){x,y};
e[x].push_back(y);
e[y].push_back(x);
}
for(int i=1;i<=N;i++){if(!dfn[i])Tarjan(i,0);}
for(int i=1;i<=M;i++)
{
int s1=belong[edge[i].x],s2=belong[edge[i].y];
if(s1!=s2)
{
w[s1].push_back(s2);
w[s2].push_back(s1);
}
}
DFS_dp(1,0);
printf("%d\n",ans[1]);
return 0;
}