统计决策方法-贝叶斯公式介绍附上习题

本文主要介绍了统计决策中的关键概念,包括最小错误率贝叶斯决策和最小风险错误率贝叶斯决策,并通过具体实例展示了如何应用这两种决策方法进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言:

统计决策方法:

习题:

朋友推荐的习题:

最小错误率贝叶斯决策和最小风险错误率贝叶斯决策

概率密度函数的估计


前言:

在统计学习中,这部分是最看得云里雾里的,所以需要好好梳理一下概念,把基本的内容掌握清楚,看了很多资料,一上来就是概率统计公式推来推去,虽然我们高中学过这些,可是时间太久了,用的比较少,所以要捡起来这些知识点的难度是比较大的,因此整理了一下自己这几天复习整理的复习笔记。好了,废话不多说,直接看正文:

统计决策方法:

下图的这些概念需要牢记

 需要注意的有:

最小错误率贝叶斯公式,其他的都是为了表明它在分类上的作用

最小风险贝叶斯公式,没错就是简单的引入了风险项目而已。

习题:

朋友推荐的习题:

最小错误率贝叶斯决策和最小风险错误率贝叶斯决策

假设在某个地区的XX普查中,正常值(W1)和异常值(W2)的先验概率分别为P(W1)=0.95, P(W2)=0.05。现有待识别细胞, 其观察值从类概率密度分布曲线上查得p(X|W1)=0.25,P(X lW2)=0.45.

(1)试对该xx使用最小错误率贝叶斯决策规则进行分类: (2)若损失函数的值分别为L11=0,L22=0.L12=15,L21=1试用最小风险贝叶斯决策规则对细胞进行分类。

概率密度函数的估计

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆_恒心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值