机器学习
文章平均质量分 94
机器学习
Vanghua
这个作者很懒,什么都没留下…
展开
-
支持向量机论文翻译——使用不匹配字符串核函数的支持向量机进行蛋白质分类 Mismatch String Kernels for SVM Protein Classification
免费查看该论文的链接:论文链接摘要:我们介绍了一种字符串核函数(注:支持向量机SVM中数据升维使用核函数),叫做字符串不匹配核函数。基于这种核函数(注:核函数是支持向量机的核心,知核函数,可进行分类)的支持向量机SVM用于解决蛋白质分类问题。 这种支持向量机SVM分类的依据是蛋白质序列中长度为K的子序列和序列中m个不匹配位置(注:就是k和m作为核函数的参数,具体参见下文核函数公式)并且不需要依赖任何生成模型来计算生成序列(注:没读懂,表示牛逼)。我们使用不匹配的树型数据结构来高效计算核函数(注:不清楚具翻译 2022-04-29 20:56:29 · 642 阅读 · 0 评论 -
JavaScript模拟退火
1.金属退火1.1 金属退火概念:金属退火是一种化学上的热处理技术,指的是将金属加热到一定温度后再以适宜速度冷却。金属退火可以改变金属的一些物理性质,化学性质,以达到某种特殊的用途。1.2 金属退火化学模型:加热后金属原子最初处于某种活跃的状态,此时原子的活跃程度为x1,金属的内能E(x1)可由x得来,温度为T1降温时金属原子的活跃程度逐渐下降,此时原子的活跃程度为x2,金属的内能E(x2)可由x得来,温度为T2当温度降至稳定温度时金属原子的活跃程度最低,此时原子的活跃程度为x3,金属的内能E(原创 2022-02-08 20:48:02 · 1410 阅读 · 0 评论 -
JavaScript线性回归
1.线性回归梯度下降法1.1 线性回归前提前提条件: 有一个n元函数hθ(x),现在已知m组函数值和n元参数的取值情况,需要预测出最能贴合该情况的函数表达式。存储规范:(依据吴恩达教程的规范)函数值存储到一个1行m列的矩阵中函数中n元参数取值情况存储到一个n行m列的矩阵中函数中n元参数的系数存储到一个n行1列的矩阵中上标表示列,下标表示行矩阵的列表示数据组数,矩阵的行表示数据维度1.2 模型表示公式一: 用求和式表示某一组数据的情况:hθ(x)i=∑j=1nθjixjih原创 2021-11-29 15:39:06 · 2864 阅读 · 0 评论 -
JavaScript机器学习的图形可视化和矩阵库
1.Echarts绘图库引入学习演示过程不涉及大型工程,只需要下载Echarts的js文件在html中引用即可。使用echarts.js进行数据分析,在本人体验来看,要比python提供的绘制库强大的多。1.1下载Echarts.js下载链接https://www.jsdelivr.com/package/npm/echarts选择第一个“echarts.min.js”打开将内容拷贝到本地js文件中1.2 测试Echarts.js用Echarts画一个线性回归需要用到的分析图<ht原创 2021-11-24 18:01:00 · 1663 阅读 · 0 评论