知识图谱
文章平均质量分 79
球球offer
这个作者很懒,什么都没留下…
展开
-
动态知识图补全问题
4.19-4.23 动态信息1.Dual Quaternion Knowledge Graph Embeddings本文应该是静态方法,距离公式和旋转公式的一个统一框架。提出一个新的映射空间,Dual Quaternion space .感觉和极坐标那个有异曲同工之妙,不过本文算是统一了两个主要方法在一个空间的平面完成了旋转操作,在立体上完成了距离测算,两者统一就是完成了头尾实体的映射。两种传统方法的优劣定义三种关系,记录一下对称(symmertric)(反对称(abtisymmetri..原创 2021-05-12 21:49:18 · 1965 阅读 · 4 评论 -
[论文笔记]知识图谱+推荐系统
仅作个人笔记(2021.3.22-2021.3.29)1.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems看到一篇翻的不错RippleNet翻译减轻计算负担,对邻居节点进行采样,而不是计算所有n跳邻居。偏好传播使用了本质上注意力机制结论,本文首次将path-based 和embedding-base方法融合。有效提出一个端到端的模型,但是在计算关系R的embeddi原创 2021-03-23 19:39:43 · 662 阅读 · 0 评论 -
【论文笔记】KG+GCN+RS
Knowledge Graph Convolutional Networks for Recommender Systems论文地址仅做学习草稿。欢迎交流目的:计算得到y^u,v\hat y_{u,v}y^u,v,即推荐概率符号定义符合常规方法KGCN Layer计算得到关系r对u的重要程度进一步表示v的拓扑邻近结构上述的用户关系分数在计算实体邻居表示时作为个性化过滤器。由于实体数量级大,采样的邻居为固定大小而不是全部邻居。感受野的计算为了提高计算效率,在训练时采用负采样原创 2021-03-20 14:29:59 · 375 阅读 · 0 评论 -
论文笔记-多任务学习(rec-kgc)
多任务学习,Unifying Task-Oriented Knowledge Graph Learning and Recommendation解决问题联合知识图谱和图谱补全符号[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hVkjy4I4-1616076455275)(D:\Typora\img\image-20210318191127518.png)]模型[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M6QHoUwh-16160原创 2021-03-19 09:10:48 · 358 阅读 · 0 评论 -
【论文笔记】通过自注意力机制的动态图表示
本专题的论文笔记基本作为草稿记录,好方便查阅,可能没有那么详细。模型结构主要分为两个部分,structural and temporal self-attention layers。使用muliti-head attentions to improve model capacity and stability。结构化模块提取领域邻居信息节点来作为输入表示到时间模块。时间模块来捕获时间变化。STRUCTURAL SELF-ATTENTION输入为节点表示集合,xv∈RDx_v\in R^Dxv原创 2021-03-17 11:03:35 · 1017 阅读 · 2 评论 -
【论文笔记】多任务学习-推荐系统和图嵌入
Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation摘要和符号定义模型交叉压缩模块推荐模块图嵌入模块算法摘要和符号定义本文主要提出了一个多任务学习模型,联合学习图嵌入模型和推荐系统。给定用户U和商品v,以及两者交互矩阵Y∈RM×RY \in R^{M \times R}Y∈RM×R,和知识图谱G,目标是预测用户u的潜在兴趣g,得到一个预测函数yu,v=F(u,v∣θ,Y,G)y_{u,v}=F(u,v| \thet原创 2021-03-13 21:12:23 · 2316 阅读 · 0 评论 -
知识图谱用于推荐系统
【论文笔记】知识图谱用于推荐系统前言和符号基于嵌入(embedding-based)two-stageg learningjoint learningmulti-task learingconnection-based methodmeta-structurepath-embeddingpropagation-based method三种方法对比future work论文地址前言和符号知识图谱在推荐系统的应用,主要有三个方向,基于嵌入,基于连接和基于传播的。本文符号本文一些基础定义方法概原创 2021-03-07 16:41:22 · 1698 阅读 · 4 评论 -
知识图谱补全(张量图学习-链路预测)
【论文笔记】Tensorial graph learning for link prediction in generalized heterogeneous networks重点主要贡献点三级目录论文地址:paper重点本文是在广义的异构网络上的一个张量图学习,用于链路预测。在具体操作中知识图谱的补全常常成为链路预测任务,本文的重点在于通过引入节点和边张量来构造张量图。主要贡献点提出一种新型图,张量图与异构网络的多图、超图和其他表示相比,新引入的张量图在扩展到张量n-部图以表示节点异质性和将原创 2021-01-30 20:55:12 · 3204 阅读 · 1 评论 -
图嵌入方法总结
Knowledge Graph Embedding: A Survey of Approaches and Applications前言基本符号图嵌入(只利用事实发现)翻译距离模型transE家族高斯嵌入其他的距离模型典型的训练程序图嵌入(结合其他信息)下游应用作者:Quan Wang , Zhendong Mao , Bin Wang, and Li Guo论文地址:paper前言17年TKDE的论文,回顾下主要的图嵌入方法基本符号都是些常规的符号表示,稍微过一下很容易记住。图嵌入(只利用原创 2021-01-15 17:52:17 · 1347 阅读 · 0 评论 -
图神经网络综述论文笔记
Graph Neural Networks:A Review of Methods and Applications前言模型GNNGNN的变体图类型传播方式训练方法通用框架应用主要问题浅结构(Shallow Structure)动态图(Dynamic Graphs)非结构化场景(Non-Structural Scenarios)可伸缩性(Scalability)author:Jie Zhou∗, Ganqu Cui∗, Zhengyan Zhang∗, Cheng Yang, Zhiyuan Liu, L原创 2021-01-13 11:21:48 · 795 阅读 · 0 评论 -
利用图神经网络进行的知识图谱补全综述
A Survey on Graph Neural Networks for Knowledge Graph Completion-论文阅读笔记前言二级目录三级目录作者:Siddhant Arora单位:Indian Institute of Technology Delhi联系方式:siddhantarora1806@gmail.com前言最近在看图谱补全相关的内容,现在比较多的方向是采用图嵌入的方式进行学习,这篇论文综述了图神经网络在补全上的应用,值得读一读二级目录三级目录...原创 2020-12-20 20:38:08 · 5525 阅读 · 3 评论 -
知识图谱补全-ProjE: Embedding Projection for Knowledge Graph Completion
ProjE: Embedding Projection for Knowledge Graph Completion阅读笔记backgroundmotivationmodelexperimentsconclusion会议:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)author :Baoxu Shi and Tim WeningerUniversity of Notre Dam原创 2020-12-05 21:09:42 · 2388 阅读 · 0 评论 -
知识图谱-基于张量分解的路径推理补全
路径张量分解的知识图谱推理算法*(2017)前言2.1背景和目的2.2.1构建2.2 算法描述2.3实验2.3.1 路径问题回答2.3.2 实体链接预测前言论文分享,一个基于张量分解的知识图谱的推理分享2.1背景和目的本文是知识的一个推理过程,知识图谱在链路预测上是及其重要的应用,现有方法中往往只考虑了实体间的直接关系,忽略了图本身的结构化信息。现有的推理算法不能解决长路劲的推理。所谓张量分解算法就是将知识图谱视作一个大的张量,用分解算法将图谱降维,减少计算规模,这在传统的张量分解中已经较为成熟原创 2020-11-19 20:43:54 · 2828 阅读 · 0 评论 -
知识图谱与bert
一、图谱补全1.KG-BERT: BERT for Knowledge Graph Completion(计算三元组的分类、实体预测、关系预测都达到SOTA水平)1.1背景和目的三元组的知识图谱在完整度上还有很大的差距 ,评估图谱中不存在的三元组的合理性。现有方法中,其一 knowledge graph embedding,由于图谱稀疏性只用了结构信息。其二,使用了文本信息,忽略了上下文下信息本文方法:将实体和关系视为文本序列,将补全问题视为序列分类问题。之后fine-tune bert来实现原创 2020-11-18 19:33:24 · 1708 阅读 · 0 评论 -
知识图谱论文阅读笔记-TransE
transE阅读笔记-Translating Embeddings for Modeling Multi-relational Data前言算法介绍算法训练参考前言对知识图谱写过一个小小的综述笔记-----知识图谱综述笔记下周组会要讲论文了,先对知识图谱中的trans家族进行逐篇阅读,笔记记录,好进行一个总结。今天是第一篇transE,后续是transR,transH。算法介绍transE算法是在13年提出的,本文的研究焦点就在多关系数据的问题,其目标是提供一个高效的工具实现自动的补全新的事物而原创 2020-10-20 11:48:04 · 894 阅读 · 0 评论 -
知识图谱综述笔记
知识图谱综述前言知识图谱构建结构图三级目录前言最近开始研究知识图谱,首先看了几下综述,做一个总结性的描述。为之后学习奠定基础。知识图谱构建结构图三级目录原创 2020-09-25 11:16:43 · 897 阅读 · 0 评论