collections

namedtuple
‘’’
collections.namedtuple(typename, field_names, verbose=False, rename=False)
typename:元组名称
field_names: 元组中元素的名称
rename: 如果元素名称中含有 python 的关键字,则必须设置为 rename=True
verbose: 默认就好

菜鸟地址
‘’’

from  collections import namedtuple

# 两种方法来给 namedtuple 定义方法名
#User = namedtuple('User', ['name', 'age', 'id'])
User =namedtuple('User', 'name age id')
user = User('tester', '22', '464643123')

print(user)

deque
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈

 from collections import deque
q = deque(['a', 'b', 'c'])
q.append('x')
q.appendleft('y')
#q
#deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素

defaultdict
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

 from collections import defaultdict
 dd = defaultdict(lambda: 'N/A')
dd['key1'] = 'abc'
 dd['key1'] # key1存在
#'abc'
dd['key2'] # key2不存在,返回默认值
#'N/A'

OrderedDict
如果要保持Key的顺序,可以用OrderedDict

from collections import OrderedDict
 d = dict([('a', 1), ('b', 2), ('c', 3)])
 d # dict的Key是无序的
#{'a': 1, 'c': 3, 'b': 2}
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
 od # OrderedDict的Key是有序的
#OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:



OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print('remove:', last)
        if containsKey:
            del self[key]
            print('set:', (key, value))
        else:
            print('add:', (key, value))
        OrderedDict.__setitem__(self, key, value)

ChainMap

ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。

什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数

from collections import ChainMap
import os, argparse

# 构造缺省参数:
defaults = {
    'color': 'red',
    'user': 'guest'
}

# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }

# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)

# 打印参数:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])

Couner
Counter是一个简单的计数器

 from collections import Counter
c = Counter()
for ch in 'programming':
...     c[ch] = c[ch] + 1
...
#c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值