旋转图像

给定一个n x n的二维矩阵matrix表示一个图像。将图像顺时针旋转90度。

思路一:使用辅助数组

在这里插入图片描述
对于矩阵中第i行的第j个元素,在旋转后,它出现在倒数第i列第j个位置。也就是对于矩阵中的元素matrix[row][col],在旋转后,它的新位置为matrix_new[col][n - row - 1]。其中n代表矩阵的高度。

class Solution {
public:
	void rotate(vector<int>& matrix)
	{
		int n = matrix.size();
		for (int i = 0; i < n; i++)
			for (int j = 0; j < n; j++)
				matrix_new[j][n - i - 1] = matrix[i][j];
	}
}
matrix = matrix_new;

复杂度分析:

  • 时间复杂度:O(N2),其中 N 是matrix 的边长。
  • 空间复杂度:O(N2)。我们需要使用一个和matrix 大小相同的辅助数组。

思路二:原地旋转

matrix_new[col][n - row - 1] = matrix[row][col]

它阻止了我们进行原地旋转,因为覆盖。因此可以考虑用一个临时变量temp暂存matrix_new[col][n - row - 1]中的值。
那么考虑matrix[col][n - row - 1]经过旋转操作之后会到哪个位置呢?

matrix[n−row−1][n−col−1]=matrix[col][n−row−1]

同样地,直接赋值会覆盖掉matrix[n - row - 1][n - col - 1]原来的值,因此我们还是需要使用一个临时变量进行存储,不过这次,我们可以直接使用之前的临时变量temp。

我们再重复一次之前的操作,matrix[n−row−1][n−col−1] 经过旋转操作之后会到哪个位置呢?

matrix[n−col−1][row]=matrix[n−row−1][n−col−1]

matrix[n−col−1][row] 经过旋转操作之后回到哪个位置呢?

matrix[row][col]=matrix[n−col−1][row]

在这里插入图片描述

  • 当 nn 为偶数时,我们需要枚举 n^2 / 4 = (n/2) * (n/2)个位置,可以将该图形分为四块
  • 当 nn 为奇数时,由于中心的位置经过旋转后位置不变,我们需要枚举 (n^2-1) / 4 = ((n−1)/2)×((n+1)/2) 个位置
class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < (n + 1) / 2; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值