给定一个n x n的二维矩阵matrix表示一个图像。将图像顺时针旋转90度。
思路一:使用辅助数组
对于矩阵中第i行的第j个元素,在旋转后,它出现在倒数第i列第j个位置。也就是对于矩阵中的元素matrix[row][col],在旋转后,它的新位置为matrix_new[col][n - row - 1]。其中n代表矩阵的高度。
class Solution {
public:
void rotate(vector<int>& matrix)
{
int n = matrix.size();
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
matrix_new[j][n - i - 1] = matrix[i][j];
}
}
matrix = matrix_new;
复杂度分析:
- 时间复杂度:O(N2),其中 N 是matrix 的边长。
- 空间复杂度:O(N2)。我们需要使用一个和matrix 大小相同的辅助数组。
思路二:原地旋转
matrix_new[col][n - row - 1] = matrix[row][col]
它阻止了我们进行原地旋转,因为覆盖。因此可以考虑用一个临时变量temp暂存matrix_new[col][n - row - 1]中的值。
那么考虑matrix[col][n - row - 1]经过旋转操作之后会到哪个位置呢?
matrix[n−row−1][n−col−1]=matrix[col][n−row−1]
同样地,直接赋值会覆盖掉matrix[n - row - 1][n - col - 1]原来的值,因此我们还是需要使用一个临时变量进行存储,不过这次,我们可以直接使用之前的临时变量temp。
我们再重复一次之前的操作,matrix[n−row−1][n−col−1] 经过旋转操作之后会到哪个位置呢?
matrix[n−col−1][row]=matrix[n−row−1][n−col−1]
matrix[n−col−1][row] 经过旋转操作之后回到哪个位置呢?
matrix[row][col]=matrix[n−col−1][row]
- 当 nn 为偶数时,我们需要枚举 n^2 / 4 = (n/2) * (n/2)个位置,可以将该图形分为四块
- 当 nn 为奇数时,由于中心的位置经过旋转后位置不变,我们需要枚举 (n^2-1) / 4 = ((n−1)/2)×((n+1)/2) 个位置
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n / 2; ++i) {
for (int j = 0; j < (n + 1) / 2; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - j - 1][i];
matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
matrix[j][n - i - 1] = temp;
}
}
}
};