给定一个包含非负整数m x n网格grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
思路:动态规划
- 初始化:
- 左上角元素初始化为0
- 对于第一行或者第一列上的元素,每个元素对应的最小路径和,即为对应的路径上的数字总和。
- 状态转移:
对于不在第一行和第一列的元素,可以从其上方相邻元素向下移动一步到达,或者从其左方相邻元素向右移动一步到达,元素对应的最小路径和等于其上方相邻元素与其左方相邻元素两者对应的最小路径和中的最小值加上当前元素的值。
class Solution {
public:
int minPathSum(vector<vector<int>>& grid)
{
if (grid.size() == 0 || grid[0].size() == 0)
{
return 0;
}
int rows = grid.size();
int columns = grid[0].size();
vector<vector<int>> dp(rows, vector<int>(columns));
dp[0][0] = grid[0][0];
for (int i = 1; i < rows; i++)
{
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < columns; j++)
{
dp[0][j] = dp[0][j-1] + grid[0][j];
}
for (int i = 1; i < rows; i++)
for (int j = 1; j < columns; j++)
{
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
return dp[rows - 1][columns - 1];
}
};