Python课后作业 1. 汉诺塔问题 ---- (第八次作业)

递归解构汉诺塔:从理论到实践
本文通过闲聊引入汉诺塔问题,指出递归是解决此类问题的关键。作者分享了一篇深入浅出的博客链接,帮助读者理解汉诺塔的递归解决方案,并提供了一个代码实现。通过实际操作汉诺塔游戏和阅读博客,读者可以更好地掌握这个问题。文章还包含了完整的代码实现,展示如何将汉诺塔问题从A区移动到C区的过程。


前引闲聊


这次的作业啊 我觉得就挺有意思的
尽管我觉得第二个那个分治法找硬币题目真的好蠢好蠢好蠢
具体蠢在哪里我就在分治法找硬币那道题讲

我记得之前我上学期
我就看到了这个汉诺塔问题
但当时确实水平有限 再加上放寒假了
就🕊 🕊 🕊 鸽掉惹

没想到这次的题就布置了汉诺塔
那顺带这次把汉诺塔问题解决了


汉诺塔博客分析


当看到这类问题 其实第一个思路就应该是递归解决
汉诺塔精讲部分我放一个博客链接 确实讲的很清楚很好
但需要本身有递归的基础 + 一部分的灵性

图解汉诺塔问题(递归求解)

这篇博客我认为已经通俗到封顶了
如果真的想搞懂这类问题可以自己先去玩半个小时的汉诺塔小游戏
再加上自己去读读博客
就差不多了


原题题目


在这里插入图片描述


代码实现


提交代码需要把注释部分给删掉 不然会出错
注释部分解读代码


count = 1 #设置全局变量 方便记录步骤数

#A为目前所在区域 B为工具人区域 C为目标移动区
#A B C可类化为3个相邻的柱子
def HanNuoTa(num,A,B,C):
    global count #全局变量声明
    if(num == 0):return #递归完成结束条件

	#这里我设置的意思就是移动了最底部以上的块
	#这里三个字母分别放置的位置意思是 A移动到B C为工具人地区方便移动
    HanNuoTa(num-1,A,C,B) 
    
    #把最底部的块移动 移动轨迹A->C
    print("[STEP{0:>4}] {1}->{2}".format(count,A,C));count+=1
	
	#此刻移动后 我们的最底部以上的块就移动B区了
	#那么我们递归思路把B区的所有块移动到C去 A区是工具人区
    HanNuoTa(num-1,B,A,C)

n = int(input())
HanNuoTa(n,'A','B','C')


提交结果

在这里插入图片描述

<think>嗯,用户想要找汉诺塔问题的非递归Python实现方法。首先,我得回忆一下汉诺塔问题的基本情况。汉诺塔是经典的递归问题,通常用递归方法解决,但用户需要非递归的实现。这可能是因为递归在处理大数时会有栈溢出的风险,或者用户想了解不同的实现方式。 首先,我得确定汉诺塔的非递归算法是如何工作的。记得非递归方法通常使用栈来模拟递归过程。递归解法中的每一步移动都可以分解为更小的子问题,非递归则需要显式地管理这些步骤的状态。 接下来,我需要查阅相关的算法知识。汉诺塔的非递归实现可以通过迭代和堆栈来管理移动步骤。每个步骤可以看作是一个状态,包含要移动的盘子数量、起始柱、辅助柱和目标柱。在递归中,这些状态由函数调用栈处理,而非递归则需要手动维护一个堆栈结构。 然后,考虑如何将这些步骤转化为Python代码。可能需要定义一个栈来保存待处理的任务,每个任务包括n(盘子数)、source、auxiliary、target。初始时,将主问题(n, a, b, c)压入栈。然后循环处理栈中的任务,分解为更小的子任务,直到所有盘子移动完成。 需要注意处理顺序,递归解法中通常是先移动n-1个盘子从源到辅助,然后移动第n个盘子到目标,最后再移动n-1个盘子从辅助到目标。非递归实现中需要确保分解任务的顺序正确,可能需要逆序压入栈来模拟递归的执行顺序。 另外,还要考虑边界条件,当n=1时直接移动盘子。同时,确保每次移动都符合汉诺塔的规则,即小盘不能在大盘下面。 现在,参考用户提供的引用内容,特别是引用[4]提到非递归实现借助堆栈。这与我之前的思路一致,所以可以结合这个引用来构建代码示例。 然后,编写代码时,需要定义一个栈,例如使用列表的append和pop方法。每个栈元素可能是一个元组,包含n、source、target、auxiliary。处理时,分解任务,先将较大的子任务压入栈,确保处理顺序正确。 最后,测试代码是否正确,例如n=3时是否能正确输出所有移动步骤。并且确保代码符合Python语法,没有错误。 总结步骤:初始化栈,压入初始任务,循环处理栈中的任务,分解为更小的子任务或直接移动盘子。每一步分解时注意顺序,确保与递归等效。输出每一步的移动指令。</think>### 汉诺塔非递归Python实现详解 汉诺塔的非递归算法通过堆栈模拟递归过程,显式管理移动步骤。以下是具体实现方法: #### 核心思路 1. **堆栈模拟递归**:用栈存储待处理的子任务(包含盘子数量、源柱、目标柱、辅助柱) 2. **任务分解规则**: - 当处理任务$n>1$时,按逆序压入三个子任务(对应递归的执行顺序) - 当$n=1$时直接执行移动操作 #### Python代码实现 ```python def hanoi_nonrecursive(n, a, b, c): stack = [] # 初始任务:移动n个盘子从a到c,借助b stack.append((n, a, c, b)) while stack: current = stack.pop() num, source, target, auxiliary = current if num == 1: print(f"移动盘子从 {source} 到 {target}") else: # 注意压栈顺序与执行顺序相反 # 步骤3:移动n-1个盘子从辅助柱到目标柱 stack.append((num-1, auxiliary, target, source)) # 步骤2:移动第n个盘子到目标柱 stack.append((1, source, target, auxiliary)) # 步骤1:移动n-1个盘子从源柱到辅助柱 stack.append((num-1, source, auxiliary, target)) # 示例:3个盘子从A到C,借助B hanoi_nonrecursive(3, 'A', 'B', 'C') ``` #### 代码解析 1. **堆栈初始化**:存储元组`(盘子数, 源柱, 目标柱, 辅助柱)` 2. **循环处理**: - 弹出栈顶任务 - 当处理多盘子任务时,分解为三个子任务压栈(顺序与递归执行相反) - 单盘子任务直接执行移动 #### 执行结果 ``` 移动盘子从 A 到 C 移动盘子从 A 到 B 移动盘子从 C 到 B 移动盘子从 A 到 C 移动盘子从 B 到 A 移动盘子从 B 到 C 移动盘子从 A 到 C ``` 此算法时间复杂度仍为$O(2^n)$,但避免了递归的栈溢出风险。通过显式堆栈管理,可以处理较大规模的汉诺塔问题[^4]。
评论 6
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Love 6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值