【算法 三】—— 归并排序

本文介绍了归并排序算法,该算法采用分而治之的策略,时间复杂度为Θ(nlgn)。文章详细阐述了归并排序的Divide、Conquer和Combine三个步骤,并通过实例展示了其工作原理。此外,还分析了归并排序的时间复杂度,指出其优于插入排序的效率,但未讨论特定场景下选择插入排序的情况。
摘要由CSDN通过智能技术生成

归并排序

插入排序算法采取增量式(Incremental)的策略解决问题,每次添一个元素到已排序的子序列中,逐渐将整个数组排序完毕,它的时间复杂度是O(n2)。下面介绍另一种典型的排序算法--归并排序,它采取分而治之(Divide-and-Conquer)的策略,时间复杂度是Θ(nlgn)。归并排序的步骤如下:
1. Divide: 把长度为n的输入序列分成两个长度为n/2的子序列。
2. Conquer: 对这两个子序列分别采用归并排序。

3. Combine: 将两个排序好的子序列合并成一个最终的排序序列。在描述归并排序的步骤时又调用了归并排序本身,可见这是一个递归的过程。

例:归并排序

#include <stdio.h>

#define LEN 8
int a[LEN] = {5, 2, 4, 7, 1, 3, 2, 6};

void merge(int start, int mid, int end)
{
	int n1 = mid - start + 1;
	int n2 = end - mid;
	int left[n1], right[n2];
	int i, j, k;
	
	for (i = 0; i < n1; i++) /*left holds a[start...mid]*/
		left[i] = a[start+i];
	for (j = 0; j<n2; j++)   /*right holds a[mid+1...end]*/
		right[j] = a[mid+1+j];
	i = j = 0;
	k = start;
	while (i < n1 && j < n2)
		if (left[i] < right[j])
			a[k++] = left[i++];
		else
			a[k++] = right[j++];
	while (i < n1)		/*left[] is not exhausted*/
		a[k++] = left[i++];
	while (j < n2)		/*right[] is not exhausted*/
		a[k++] = right[j++];
}

void sort(int start, int end)
{
	int mid;
	if (start < end)
	{
		mid = (start + end)/2;
		printf("sort (%d-%d, %d-%d) %d %d %d %d %d %d %d %d\n",start, mid, mid+1, end, a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7]);
		sort(start, mid);
		sort(mid+1, end);
		merge(start, mid, end);
		printf("merge (%d-%d, %d-%d) to %d %d %d %d %d %d %d %d\n",start, mid, mid+1, end, a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7]);
	}
}

int main(void)
{
	sort(0, LEN-1);
	return 0;
}

执行结果是:

[zhangsan@localhost study-c]$ gcc -Wall -g merger.c -o merger
[zhangsan@localhost study-c]$ ./merger 
sort (0-3, 4-7) 5 2 4 7 1 3 2 6
sort (0-1, 2-3) 5 2 4 7 1 3 2 6
sort (0-0, 1-1) 5 2 4 7 1 3 2 6
merge (0-0, 1-1) to 2 5 4 7 1 3 2 6
sort (2-2, 3-3) 2 5 4 7 1 3 2 6
merge (2-2, 3-3) to 2 5 4 7 1 3 2 6
merge (0-1, 2-3) to 2 4 5 7 1 3 2 6
sort (4-5, 6-7) 2 4 5 7 1 3 2 6
sort (4-4, 5-5) 2 4 5 7 1 3 2 6
merge (4-4, 5-5) to 2 4 5 7 1 3 2 6
sort (6-6, 7-7) 2 4 5 7 1 3 2 6
merge (6-6, 7-7) to 2 4 5 7 1 3 2 6
merge (4-5, 6-7) to 2 4 5 7 1 2 3 6
merge (0-3, 4-7) to 1 2 2 3 4 5 6 7

sort函数把a[start..end]平均分成两个子序列,分别是a[start..mid]和a[mid+1..end],对这两个子序列分别递归调用sort函数进行排序,然后调用merge函数将排好序的两个子序列合并起来,由于两个子序列都已经排好序了,合并的过程很简单,每次循环取两个子序列中最小的元素进行比较,将较小的元素取出放到最终的排序序列中,如果其中一个子序列的元素已取完,就把另一个子序列剩下的元素都放到最终的排序序列中。为了便于理解程序,我在sort函数开头和结尾插了打印语句,可以看出调用过程是这样的:

 归并排序调用过程:


图中S表示sort函数,M表示merge函数,整个控制流程沿虚线所示的方向调用和返回。由于sort函数递归调用了自己两次,所以各函数之间的调用关系呈树状结构。画这个图只是为了清楚地展现归并排序的过程,读者在理解递归函数时一定不要全部展开来看,而是要抓住Base Case和递推关系来理解。我们分析一下归并排序的时间复杂度:

首先分析merge函数的时间复杂度。在merge函数中演示了C99的新特性--可变长数组,当然也可以避免使用这一特性,比如把left和right都按最大长度LEN分配。不管用哪种办法,定义数组并分配存储空间的执行时间都可以看作常数,与数组的长度无关,常数用Θ-notation记作Θ(1)。设子序列a[start..mid]的长度为n1,子序列[mid+1..end]的长度为n2,a[start..end]的总长度为n=n1+n2,则前两个for循环的执行时间是Θ(n1+n2),也就是Θ(n),后面三个for循环合在一起看,每走一次循环就会在最终的排序序列中确定一个元素,最终的排序序列共有n个元素,所以执行时间也是Θ(n)。两个Θ(n)再加上若干常数项,merge函数总的执行时间仍是Θ(n),其中n=end-start+1。

然后分析sort函数的时间复杂度,当输入长度n=1,也就是start==end时,if条件不成立,执行时间为常数Θ(1),当输入长度n>1时:

总的执行时间 = 2 × 输入长度为n/2的sort函数的执行时间 + merge函数的执行时间Θ(n)

设输入长度为n的sort函数的执行时间为T(n),综上所述:


这是一个递推公式(Recurrence),我们需要消去等号右侧的T(n),把T(n)写成n的函数。其实符合一定条件的Recurrence的展开有数学公式可以套,这里我们略去严格的数学证明,只是从直观上看一下这个递推公式的结果。当n=1时可以设T(1)=c1,当n>1时可以设T(n)=2T(n/2)+c2n,我们取c1和c2中较大的一个设为c,把原来的公式改为:


这样计算出的结果应该是T(n)的上界。下面我们把T(n/2)展开成2T(n/4)+cn/2(下图中的(c)),然后再把T(n/4)进一步展开,直到最后全部变成T(1)=c(下图中的(d)):


把图(d)中所有的项加起来就是总的执行时间。这是一个树状结构,每一层的和都是cn,共有lgn+1层,因此总的执行时间是cnlgn+cn,相比nlgn来说,cn项可以忽略,因此T(n)的上界是Θ(nlgn)。如果先前取c1和c2中较小的一个设为c,计算出的结果应该是T(n)的下界,然而推导过程一样,结果也是Θ(nlgn)。既然T(n)的上下界都是Θ(nlgn),显然T(n)就是Θ(nlgn)。和插入排序的平均情况相比归并排序更快一些,虽然merge函数的步骤较多,引入了较大的常数、系数和低次项,但是对于较大的输入长度n,这些都不是主要因素,归并排序的时间复杂度是Θ(nlgn),而插入排序的平均情况是Θ(n2),这就决定了归并排序是更快的算法。但是不是任何情况下归并排序都优于插入排序呢?哪些情况适用插入排序而不适用归并排序?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值