LeetCode.169. 多数元素(Boyer-Moore投票算法)

Boyer-Moore算法通过成对删除不同元素找到可能的多数元素。高效适用于大数据,但需二次遍历确认。适用于有majority的数据集。
摘要由CSDN通过智能技术生成

. - 力扣(LeetCode)

Boyer-Moore 投票算法的核心思想是在一系列的元素中找到多数元素(出现次数超过一半的元素)。算法背后的直观原理是成对地从序列中删除互不相同的元素,不影响多数元素的地位。这意味着,如果我们每次都能找到两个不同的元素并将它们从序列中移除,直到无法继续为止,剩下的元素(如果有的话)必定是原序列的多数元素。

### 算法原理和步骤

1. **初始化**:选取一个候选元素(`candidate`)并将其计数(`count`)设置为0。
   
2. **遍历**:顺序遍历数组中的每个元素:
   - 如果`count`为0,我们将当前元素设为`candidate`,并将`count`设置为1。
   - 如果`count`不为0,我们将当前元素与`candidate`比较:
     - 如果当前元素与`candidate`相同,则`count`加1。
     - 如果当前元素与`candidate`不同,则`count`减1。

3. **算法结束时**,`candidate`即为整个数组的多数元素的候选者。

### 原理详解

这个算法之所以有效,基于一个事实:每次从数组中找到一对不同的元素,将它们从数组中删除,对找到多数元素的目标没有影响。因为:

- 如果多数元素参与了一次成对删除,它的数量超过了数组剩余部分的一半,所以它仍旧是剩余部分的多数元素。
- 如果多数元素没有参与成对删除,那么它在剩余部分的数量还是超过一半。

由此,当经过成对删除后,若数组中还有剩余元素,则剩余部分的多数元素与原数组的多数元素相同。

### 注意点

- Boyer-Moore 投票算法只能找到一个候选的多数元素,如果要确认这个候选元素是否真正是多数元素,则需要进行第二次遍历来统计候选元素的数量,确认其是否真的超过了总数的一半。
- 如果数组中没有元素超过总数的一半,则算法的候选者输出是无效的。这意味着对于没有多数元素的数组,算法不能保证找出一个有效的结果,因此,确认步骤是必需的。

综上所述,Boyer-Moore 投票算法凭借其简洁和高效性,在寻找多数元素的问题上非常实用,尤其是在处理大数据流或者数据集较大的情况下非常高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值