Boyer-Moore 投票算法的核心思想是在一系列的元素中找到多数元素(出现次数超过一半的元素)。算法背后的直观原理是成对地从序列中删除互不相同的元素,不影响多数元素的地位。这意味着,如果我们每次都能找到两个不同的元素并将它们从序列中移除,直到无法继续为止,剩下的元素(如果有的话)必定是原序列的多数元素。
### 算法原理和步骤
1. **初始化**:选取一个候选元素(`candidate`)并将其计数(`count`)设置为0。
2. **遍历**:顺序遍历数组中的每个元素:
- 如果`count`为0,我们将当前元素设为`candidate`,并将`count`设置为1。
- 如果`count`不为0,我们将当前元素与`candidate`比较:
- 如果当前元素与`candidate`相同,则`count`加1。
- 如果当前元素与`candidate`不同,则`count`减1。
3. **算法结束时**,`candidate`即为整个数组的多数元素的候选者。
### 原理详解
这个算法之所以有效,基于一个事实:每次从数组中找到一对不同的元素,将它们从数组中删除,对找到多数元素的目标没有影响。因为:
- 如果多数元素参与了一次成对删除,它的数量超过了数组剩余部分的一半,所以它仍旧是剩余部分的多数元素。
- 如果多数元素没有参与成对删除,那么它在剩余部分的数量还是超过一半。
由此,当经过成对删除后,若数组中还有剩余元素,则剩余部分的多数元素与原数组的多数元素相同。
### 注意点
- Boyer-Moore 投票算法只能找到一个候选的多数元素,如果要确认这个候选元素是否真正是多数元素,则需要进行第二次遍历来统计候选元素的数量,确认其是否真的超过了总数的一半。
- 如果数组中没有元素超过总数的一半,则算法的候选者输出是无效的。这意味着对于没有多数元素的数组,算法不能保证找出一个有效的结果,因此,确认步骤是必需的。
综上所述,Boyer-Moore 投票算法凭借其简洁和高效性,在寻找多数元素的问题上非常实用,尤其是在处理大数据流或者数据集较大的情况下非常高效。