- 博客(48)
- 收藏
- 关注
原创 java实现RabbitMQ消息发送和接收功能(包含测试)
以下是一个完整的Java类,同时包含RabbitMQ消息发送和接收功能,使用纯Java实现(非Spring Boot),包含Maven依赖:Maven 依赖 ()关键设计说明:双通道设计:消息发送功能:消息接收功能:资源管理:线程模型:运行程序:测试流程:自定义配置:添加消息序列化:添加JSON支持:添加重连机制:这个实现提供了生产级别的RabbitMQ操作,包含:您可以根据实际需求调整队列名称、消息处理逻辑和错误处理策略。
2025-06-11 11:25:19
171
原创 接收rabbitmq消息
修改连接参数自定义消息处理修改// 示例:解析JSON消息// System.out.println("收到订单: " + json.getString("orderId"));// 你的实际业务逻辑配置调整修改调整预取数量修改basicNack的requeue参数控制是否重新入队添加交换机绑定逻辑(如果需要)手动消息确认公平分发(QoS设置)连接和通道的异常处理资源清理优雅关闭机制如果需要处理更复杂的场景(如多个队列、消息持久化、死信队列等),可以在和。
2025-06-11 10:24:53
190
原创 前馈神经网络
希望这个“流水线”的比喻能让你对前馈神经网络的核心思想——“信息单向、分层、前向传播”——有一个深刻而直观的理解!—— 它正是我们之前详细讨论的“全连接网络”或“多层感知机(MLP)”最标准、最核心的形式。好的,我们来用生动形象的方式,深入浅出地理解。
2025-06-10 22:04:27
568
原创 详解pytorch
PyTorch 是一个基于 Python 的,由 Facebook 的 AI 研究团队(现 Meta AI)开发并维护。它以以及而著称,已成为,并在工业界应用日益广泛。
2025-06-10 21:59:43
524
原创 全连接网络
全连接网络是信息逐层抽象与组合的管道。输入数据(原始特征)经过一层层神经元的加工(加权求和 + 非线性激活),被逐步转化为更高层次、更抽象的特征表示,最终用于预测。“全连接”意味着信息的充分混合。每一层的每个神经元都能“看到”前一层的所有信息,并根据自己的“偏好”(权重)进行整合。非线性激活函数赋予了网络强大的表达能力。没有它,网络就失去了学习复杂模式的能力。学习就是通过反向传播和梯度下降,不断调整网络中所有连接的“强度”(权重)和神经元的“基础活跃度”(偏置),以最小化预测误差(损失)。
2025-06-10 21:51:16
610
原创 详解CNN
卷积神经网络通过其独特的局部连接权值共享和层级结构,巧妙地解决了处理高维网格数据(尤其是图像)时传统神经网络面临的问题。它能够自动学习数据的层次化特征表示,从简单的边缘到复杂的物体概念。从 LeNet 的开创性工作到 ResNet 对深度训练的突破,以及它在目标检测、分割等众多领域的成功应用,CNN 已成为深度学习和现代人工智能不可或缺的核心技术之一。理解其核心组件(卷积层、激活函数、池化层、全连接层)和经典架构的演进,是掌握深度学习,特别是计算机视觉的基础。
2025-06-10 21:27:38
452
原创 idea64.exe.vmoptions配置
这个配置通常是 JetBrains 官方推荐配置的增强版,或者是由有经验的用户根据特定需求(如处理超大项目、调试复杂问题)调整而来。(64位版本)运行时的 Java 虚拟机(JVM)参数。这些参数直接影响到 IDEA 的性能、内存使用、调试能力和行为。是非常规设置,需谨慎评估其效果。
2025-06-10 15:10:59
592
原创 rec_pphgnetv2完整代码学习(二)
TheseusLayer 是 PaddleOCRv5 中 rec_pphgnetv2 模型的神经网络超级控制器动态结构管理运行时层替换 (计算流程控制 (stop_after权重冻结 (高级特征提取任意中间层输出捕获多尺度特征统一收集零代码修改获取特征扩展支持模型剪枝接口 (pruner量化支持 (quanter自定义扩展点OCR 特定优化文本特征多层次提取长文本处理优化小样本迁移学习支持。
2025-06-07 11:27:02
874
原创 rec_pphgnetv2完整代码学习(一)
BNAndPad双功能集成:BN归一化 + 智能填充统计驱动:基于特征分布计算填充值边界增强:有效解决特征图边缘信息衰减即插即用:可无缝替代标准BN层这种设计显著提升了模型对文本边界特征的捕捉能力,特别是在处理长文本、小尺寸文字等挑战性场景时表现突出,是OCR精度提升的关键技术之一。
2025-06-07 09:45:52
396
原创 HttpURLConnection实现
如果接口返回403错误(如之前问题所述),你可能需要添加认证信息。建议先用Postman测试确保接口可用,再用此Java代码集成到你的应用中。
2025-06-07 09:42:46
446
原创 PPHGNetV2源代码解析
动态结构重参数化训练时:多分支丰富特征表达推理时:单分支保持效率硬件感知优化conv_bn组合支持训练后融合任务驱动架构# 动态调整结构检测任务:多尺度特征金字塔识别任务:空间序列化适配CRNN结构化剪枝支持# 将指定层后所有操作设为Identity替换子模块控制训练范围PP-OCRv5选择B4的工程考量服务端CPU推理:41ms满足实时性表格检测F1:92.1%优于ResNet34模型大小:4.9MB适合云端分发训练成本:V100 16小时vs B6的32小时。
2025-06-06 19:08:54
876
原创 pp-ocrv5改进
PP-OCRv5通过统一多语言架构、强化复杂场景适应力、升级骨干网络精度飞跃:关键场景(手写体、古籍等)平均提升40%以上。部署简化:单模型替代多模型,降低工程维护成本。国产化适配:全面支持信创环境硬件,加速产业落地。目前该模型已在教育(试卷批改)、医疗(病历数字化)、金融(合同解析)等场景验证,可访问或体验进行实测。
2025-06-06 15:58:50
709
原创 QPS、TPS、RT、IOQS、并发数等性能名词介绍
名词全称单位测量目标核心依赖QPS次/秒请求处理速度CPU、网络带宽TPS次/秒事务完成速度数据库、磁盘 IOPSRT毫秒单请求延迟代码效率、I/O 性能IOPS次/秒存储 I/O 能力磁盘类型、RAID 配置并发数个系统并行处理能力内存、线程池大小掌握这些指标有助于:✅ 精准评估系统容量✅ 快速定位性能瓶颈(如 TPS 低 → 查数据库或磁盘 IOPS)✅ 设计高可用架构(如 QPS 10万+ 需引入负载均衡+分布式缓存)
2025-06-06 15:55:10
930
原创 ubuntu 安装上传的 ffmpeg_7.1.1.orig.tar.xz并使用
在 Ubuntu 系统上离线安装make需要提前准备好所有依赖包。
2025-05-29 20:04:18
1200
原创 redis在spring boot中异常退出
等手段,可以有效控制连接数的健康增长。如果问题仍未解决,建议结合网络抓包(如 Wireshark)进一步分析 TCP 连接生命周期。的异常增长通常源于客户端连接管理不当或配置不合理。以 Spring Boot 为例,确认。修改 Redis 配置文件。
2025-05-19 09:58:28
987
原创 关于 Redis Stream 的消费场景中的block参数设置问题
参数,可在消息处理的实时性、系统资源消耗和业务可靠性之间取得最佳平衡。具体数值需通过压力测试结合业务指标确定。参数的设置直接关系到消息读取的实时性和系统资源消耗的平衡。在 Redis Stream 的消费场景中,
2025-05-17 17:12:14
486
原创 Redis客户端连接失败问题解决方案
根据报错信息和你的描述,尽管Redis服务正常运行,但Java客户端出现了连接失败的问题。解决,同时确保客户端配置正确。如果问题仍存在,建议使用网络抓包工具(如 Wireshark)分析 TCP 握手过程。问题根源可能是客户端频繁创建短连接导致本地端口耗尽,而非 Redis 服务异常。观察连接生命周期(创建、复用、关闭)。
2025-05-17 11:41:05
933
原创 spring.redis 和 spring.data.redis的区别
Bean总结:负责 Redis 的基础连接配置(必填)。:控制 Spring Data Redis 的高级行为(可选)。两者是互补关系,共同完成对 Redis 的完整集成。
2025-05-17 11:33:45
999
原创 RabbitMQ 作为消息总线
路由键(Routing Key):一个字符串,用于指示从生产者发送到交换器的消息应该被路由到哪个队列。创建通道(Channel):在连接上创建一个通道,所有的操作(如声明队列、交换器等)都在通道上执行。交换器(Exchange):接收来自生产者的消息,并根据路由键将它们路由到一个或多个队列。可靠性:RabbitMQ 提供了多种保证消息可靠性的机制,如持久化消息、发布确认和事务。绑定(Binding):交换器和队列之间的关联,决定了哪些队列会接收哪些消息。发布消息:通过交换器发布消息到指定的队列。
2025-05-13 14:29:07
424
原创 YOLO检测反光服区域 + 轻量级可控服装生成 + 真实后处理(实测可运行)
模型(仅200KB),但细节保留能力略有下降。完整代码已在低配设备(Intel i5 + 8GB RAM)验证通过。模块缺失),我们可以替换超分辨率方案为更轻量且无复杂依赖的方法。以下是修改后的代码方案,使用。若需进一步轻量化,可将。
2025-05-10 19:54:15
427
原创 YOLO检测反光服区域 + 轻量级可控服装生成 + 真实后处理(仅参考思路)
该方案在GTX 1660 Ti上实测单图处理时间约12秒,若需进一步轻量化可替换Stable Diffusion为更小模型(如LCM_Dreamshaper_v7)。
2025-05-10 19:53:23
258
原创 PaddleSeg 2.10.0 的 bisenetv2_hrnetw18_humanseg_1024x1024.yml 完整配置
以下是适用于 PaddleSeg 2.10.0 的。
2025-05-10 11:23:34
381
原创 MMTryon
MMTryon是由中山大学与字节跳动智能创作数字人团队联合开发的多模态多参考虚拟试穿框架,其核心目标是通过输入多张服装图像及文本指令生成高质量的组合试穿结果,同时解决传统虚拟试穿技术对精细分割的依赖及单件试穿限制的问题。,解决了虚拟试穿中的组合换装与风格控制难题。其核心优势在于对复杂场景的高适应性、细节保留能力及用户友好的交互设计。该框架的论文与技术细节可通过。MMTryon的核心架构围绕。
2025-05-09 17:15:11
597
原创 解决无法下载stable-diffusion-2-inpainting的问题
通过以上步骤,可有效解决因网络问题导致的模型加载失败。如果仍有问题,请提供具体错误日志以便进一步排查。由于直接从Hugging Face Hub下载可能不稳定,建议通过。使用更小的Inpainting模型(如。
2025-05-08 16:15:27
396
原创 使用YOLOv8检测机场照片中穿着反光服的工作人员的区域并返回边界框
如果需要实时检测或部署到生产环境,建议参考ONNX/TensorRT转换文档进行模型优化。
2025-05-08 16:01:35
123
原创 基于文本引导的图像修复(Inpainting)完整实现代码
排除项:negative_prompt中添加“deformed, blurry, cartoonish”。prompt需明确描述目标服装特征(如颜色、材质),negative_prompt排除反光元素。num_inference_steps:生成步数(建议20-50,步数越多细节越精细)。guidance_scale:文本控制强度(建议7-12,过高可能导致过度风格化)。vit_h(高精度但较慢)或vit_b(速度较快,适合实时处理)。使用全图分割(如SAM的point_grids模式)避免漏检。
2025-05-08 15:59:26
360
原创 卷积神经网络(CNN)中的卷积操作
简单地说,卷积操作是将两个函数(例如图像和卷积核)进行数学上的运算,生成另一个函数(例如特征映射)。将卷积核与图像的一个小部分进行对应元素的相乘并求和,得到卷积结果的一个像素值。不同的卷积操作,如正常的卷积、空洞卷积(Dilated Convolution)、转置卷积(Transposed Convolution)等,可以用于不同的任务,如图像分类、对象检测、语义分割等。这些操作通过改变卷积核的大小、步长(stride)、填充(padding)等方式来调整卷积的参数,以实现不同的功能。
2024-05-28 19:43:22
285
原创 算法练习题
1、在带头结点的循环链表L中,删除第i个结点,并由e返回其值。1、合并两个有序链表并且要求其中没有重复值。2、先序遍历二叉树的非递归算法(借助栈)3、求在先序遍历中处于第k个位置的结点。5、查找结点值为x的结点的双亲。2、从栈中弹出一个元素入队。6、给出求最小生成树的算法。3、移动最小值结点到最前面。4、判断链表元素是否递增。
2023-12-20 17:24:00
457
原创 时间戳字符串转标准格式时间
代码如下:SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd");Long timeStamp = new Long("1638604478272");Date date = new Date(timeStamp);String formatTime = simpleDateFormat.format(date);Date format=simpleDateFormat.parse(formatTime);
2022-01-27 15:47:24
573
转载 2021-08-24 MySQL Explain详解
在日常工作中,我们会有时会开慢查询去记录一些执行时间比较久的SQL语句,找出这些SQL语句并不意味着完事了,些时我们常常用到explain这个命令来查看一个这些SQL语句的执行计划,查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都可以通过explain命令来查看。所以我们深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。-- 实际SQL,查找用户名为Jefabc的员工select * from emp wh
2021-08-24 19:17:07
110
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人