遥感图像反映的是某一区域特定地理环境的综合体,它是由相互依存、相互制约的各种自然、人文景观、地理要素等构成,同时包含了地球各圈层间的能量、物质交换。既然遥感信息综合地反映了地球系统各要素的相互作用、相互关联,那么,各要素或地物的遥感信息特征之间也就必然具有一定的相关性。这使得人们在利用遥感技术手段认识地球时,就有可能考虑和利用这种信息相关。
遥感地学相关分析:指充分认识地物之间以及地物与遥感信息之间的相关性,并借助这种相关性,在遥感图像上寻找目标识别的相关因子,即间接解译标志,通过图像处理与分析,提取出这些相关因子,从而识别与推断地物目标本身。
在遥感图像上选取的相关因子必须具备以下条件:
1.与目标的相关性明显
2.在图像上 有明显的显示或通过图像分析处理可以提取和识别。
常见的遥感分析方法有:主导因子相关分析法、多因子相关分析法、分层分类法、
分层分类法:对于图像上看似“杂乱无章”的地物目标,往往需要深入研究它们的总体规律以及内在联系,理顺其主次或因果关系,建立一种树状结构的框架。即建立所谓的分类树,来说明它们的复杂关系,并根据分类树的结构逐级分层次地把所研究的目标一 一区分、识别出来。
分层分类法的特点:
1.用逐级逻辑判别的方式,使人的知识及判别思维能力与图像处理有机地结合起来,避免出现逻辑上的分类错误。
2.运用分层分类法,把复杂景物或现象按一定原则作了层层分解后,它们的关系被简单化了。
3.根据不同目的要求进行层层深化,相互关系明确,局部细节描述的更为清楚,每个节点上只需考虑与区分目标有关的最佳变量,这就避免了数据的冗余,减少了数据的维数,能更充分地挖掘数据的潜能。
4.由于分类树法对训练样本内的数据统计并非基于任何“正态中心趋势”假设,因而分类树比传统的统计分类法更适合于处理非正态、非同质的数据集。
5.知识的参与灵活方便,可以在不同层次间、以不同的形式介入,便于遥感与地学知识的融合。
6.分类树法能一目了然地显示任何独立变量的层次特性、相互关系及其在分类中的相对重要性等,操作者可以实实在在地看到分类过程中所发生的一切,始终控制着整个分类过程,避免“暗箱”操作,减少“不确定性”,提高了分类结果的可信度。
叠合光谱图:又称多波段响应图表,建立在光谱数据统计分析的基础上。首先进行各波段各类别光谱特征的统计分析,主要计算均值、方差,再将分析计算结果表示在图表上。
叠合光谱图直观地显示了不同类别在每一波段中的位置、分布范围、离散程度、可分性大小等,是一种以定量方式对类别数据的光谱特征进行分析与比较,选择最佳波段和波段组合,建立分类树的直观、简便、有效的方法。
***以上内容参考《遥感应用分析原理与方法》 赵英时 第二版
遥感综合分析方法
最新推荐文章于 2024-01-18 17:38:27 发布