多方位角极化呵呵层孔径雷达(MA-PolSAR)既可以不分昼夜的提供不同方位角目标散射信息,还能再云、雾、雨的情况下提供不同极化模式下的极化散射信息,使原本不够完整的目标更加及时地、全面地体现出来,因此MA-PolSAR是合成孔径雷达(SAR)研究领域前沿方向之一,对于目标识别、地物信息提取等应用具有重要意义。由于MA-PolSAR的相关研究仍处于初级阶段,相关传感器的设计、成像的方法、以及后端的应用等方面都需要进一步开展研究。SAR系统的侧视观测模式以及天线方向图导致SAR图像产生辐射差异,该差异严重影响SAR图像质量及其应用,尤其是多方位向SAR数据的应用。
目标的极化分解是极化合成孔径雷达(PolSAR)特征提取的本质。不同入射方向会得到不同的极化特征。
由于MA-PolSAR的空间采样的不连续性,无法直接获得地物极化特征的角度谱。
SAR系统工作微波频率在P-Ka波段之间,当微波的频率小于S波段时,不受云、雾、尘等物质的影响,频率在S波段到X波段之间的星载SAR系统也可在有云由于的天气下成像,所以SAR系统具有全天时、全天候的对地观测的特点。
MA-PolSAR可将目标地物的散射特性和几何特性更好地反映出来,使其对地侦察的反应能力大大提高。目标区域的信息获取量是提高目标检测、识别、确认与描述能力的基础;如何分析大量的数据方法是问题解决的核心;建立简单、快捷、兼容的分析算法是大数据时代的目标。
当前国产机载SAR获取的图像呈现近距端和远距端色调较暗,距离向中心部分色调较亮,这是由于天线方向图在系统测绘应用时未进行检测和辐射校正,导致图像深受天线方向图和作用距离的影响,给图像解译工作带来麻烦。又因为经雷达系统处理后得到的图像含有各种各样的噪声与畸变,严重减弱图像的解译能力。故SAR图像的辐射均衡是数据预处理中的必要工作,根据经验模态分解技术的自驱动性和自适应性,提出基于经验模态分解技术的SAR自适应性辐射均衡方法来实现MA-PolSAR数据的均衡,为后期工作奠定基础。
SAR距离向上的辐射差异是SAR系统的侧视观测模式和天线方向造成的,辐射差异严重影响了SAR图像,尤其是对机载SAR图像的应用。辐射误差存在于SAR图像的低频背景中,一般呈现为光滑曲线或光滑曲面。
注:文章选自《多方位角极化SAR数据处理与信息提取方法》陈楠楠 ,燕山大学硕士毕业论文
多方位角极化SAR数据处理与信息提取方法
最新推荐文章于 2024-08-19 16:17:57 发布