文章提出了一种特征选择与深度学习相结合的极化合成孔径雷达图像有监督分类算法。该算法首先根据极化SAR图像数据以及目标分解获取原始参数集,然后利用随机森林方法对特征参数集进行重要性评估,并根据特征重要性排名选择最优极化特征。以最优极化特征为输入,通过卷积神经网络学习多层特征信息,再利用训练好的网络模型对极化SAR图像进行分类。并同已有的经典有监督分类算法进行比较,结果表明该算法能够选取有效的极化特征,最终得到较为准确的分类结果。
文章在原始极化SAR特征参数集的基础上利用随机森林对其进行特征筛选,获取最优特征,减小了特征维度,与传统方法比较也体现了卷积神经网络在图像分类应用上的优越性,通过实验证明本文方法一定程度上提高了分类精度。如何对已有的网络做出改进,不局限于一种卷积网络结构,针对极化SAR数据设计稳定高效的深度网络模型,提高数据训练的鲁棒性,是接下来研究的方向。
注:文章选自《特征选择与深度学习相结合极化SAR图像分类》韩萍
特征选择与深度学习相结合极化SAR图像分类
最新推荐文章于 2024-04-29 10:05:45 发布