极化SAR地表分类

传统极化图像分类方法需大量人工设计特征,浅层网络分类器泛化能力不强。极化SAR地表分类准确性与极化和空间特征有关,深度卷积神经网络能自动进行特征提取与分类,是极化图像分类的好选择,其隐层节点可作特征检测器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统极化图像的分类方法通常由特征提取和分类器设计两部分组成,其中极化特征提取的优劣对分类效果起了决定性作用。通常特征提取阶段需要大量的人工设计特征工作,这部分工作不仅耗时费力,且往往需要专业人员对SAR系统有深刻的认识,才能设计恰当的特征。在这类浅层网络中,分类器的泛化能力并不是很强。设计分类器也需要其他的技巧。在极化SAR地表分类中,分类的准确性不仅和极化特征信息有关,还和空间特征具有紧密联系。因此,深度卷积神经网络分类器独有的特性在地表分类中具有重要的应用潜力。极化特征信息通常可以从后向散射的电磁波中提取而来,空间信息则通常不仅和目标本身有关,还与目标的邻域信息有关。然而,深度卷积神经网络能够自动地进行特征提取与特征分类,是极化图像分类的一个非常好的选择。
卷积神经网络的每个隐层节点都能够被当作一个特征检测器,当其输入中出现它所检测的某种特征时,该节点便有一个较大的响应值。同一个特征图上的所有节点都被限定为共享相同的连接权值,所以每个特征图在图像的不同位置检测同一特征。
卷积层的权值也被称作卷积核,可视化这些权值能帮助我们更好地理解卷积网络的工作原理,以了解特征检测的意义。
:文章摘选自《合成孔径雷达智能解译》徐丰等著

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毛毛真nice

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值