集群规划
下载相应资源包
下载hadoop的路径
https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.7.7/hadoop-2.7.7.tar.gz
下载zookeeper的路径
https://www.apache.org/dist/zookeeper/zookeeper-3.4.14/
下载jdk8的路径
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
安装jdk
解压 jdk 到 modules 目录
tar -zxvf jdk-8u201-linux-x64.tar.gz -C /usr/local/modules
修改jdk的环境变量
vi /etc/profile
在文件最下部分添加
JAVA_HOME=/user/local/modeules/jdk1.8.0_201 (jdk所在的路径,可以在所在目录下 pwd查看路径)
在PATH后面添加 $JAVA_HOME/bin:
执行下面命令生效
source /etc/profile
查看
java -version
ZooKeeper集群搭建
tar -zxvf zookeeper-3.4.10.tar.gz -C /usr/local/modules/
然后进入/usr/local/modules/zookeeper-3.4.10/conf目录
mv zoo_sample.cfg zoo.cfg
vim zoo.cfg
在 /usr/local/modules/zookeeper-3.4.10 目录下 创建data目录
mkdir data
在data目录下创建 myid 并
vi myid
192.168.32.130 对应的内容 0
192.168.32.131 对应的内容 1
192.168.32.132 对应的内容 2
如下图 192.168.32.130 对应的内容
三台服务器都需要安装zookeeper
scp -r zookeeper-3.4.10/ hadoop@192.168.32.131:/usr/local/modules/
scp -r zookeeper-3.4.10/ hadoop@192.168.32.132:/usr/local/modules/
配置zookeeper的环境变量
vi /etc/profile
export ZOOKEEPER_HOME=/usr/local/modules/zookeeper-3.4.10/
PATH后添加 $ZOOKEEPER_HOME/bin:
最后执行 source /etc/profile
启动zookeeper
zkServer.sh start(三台服务器执行)
zkServer.sh status 查看zookeeper的状态
下图是三台zookeeper的状态
zookkeper集群搭建好了后,下面就配置hadoop集群
配置hadoop集群
解压hadoop压缩包
tar -zxvf hadoop-2.7.7.tar.gz -C /usr/local/modules/
配置hadoop环境变量
export HADOOP_HOME=/usr/local/modules/hadoop-2.7.7
export HADOOP_CONF_DIR=/usr/local/modules/hadoop-2.7.7/etc/hadoop
执行下面命令是修改生效
source /etc/profile
配置 hadoop-env.sh 文件
vim /usr/local/modules/hadoop-2.7.7/etc/hadoop/hadoop-env.sh
修改JAVA_HOME
配置yarn-env.sh 文件
vim /usr/local/modules/hadoop-2.7.7/etc/hadoop/yarn-env.sh
配置 core-site.xml 文件
<configuration>
<!--用来指定hdfs的老大,ns为固定属性名,表示两个namenode -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns</value>
</property>
<!--用来指定hadoop运行时产生的存放目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/modules/hadoop-2.7.7/tmp</value>
</property>
<!--流文件的缓冲区单位KB-->
<property>
<name>io.file.buffer.size</name>
<value>4096</value>
</property>
<!--执行zookeeper地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>spark1:2181,spark2:2181,spark3:2181</value>
</property>
</configuration>
配置hdfs-site.xml
<configuration>
<!--执行hdfs的nameservice为ns,和core-site.xml保持一致-->
<property>
<name>dfs.nameservices</name>
<value>ns</value>
</property>
<!--ns下有两个namenode,分别是nn1,nn2-->
<property>
<name>dfs.ha.namenodes.ns</name>
<value>nn1,nn2</value>
</property>
<!--nn1的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns.nn1</name>
<value>spark1:9000</value>
</property>
<!--nn1的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns.nn1</name>
<value>spark1:50070</value>
</property>
<!--nn2的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns.nn2</name>
<value>spark2:9000</value>
</property>
<!--nn2的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns.nn2</name>
<value>spark2:50070</value>
</property>
<!--指定namenode的元数据在JournalNode上的存放位置,这样,namenode2可以 从jn集群里获取
最新的namenode的信息,达到热备的效果-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://spark1:8485;spark2:8485;spark3:8485/ns</value>
</property>
<!--指定JournalNode存放数据的位置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/local/modules/hadoop-2.7.7/journal</value>
</property>
<!--开启 namenode 故障时自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled.ns</name>
<value>true</value>
</property>
<!--配置切换的实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.ns</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!--配置隔离机制-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!--配置隔离机制的ssh登录秘钥所在的位置-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!--配置namenode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///usr/local/modules/hadoop-2.7.7/tmp/namenode</value>
</property>
<!--配置datanode数据存放的位置,可以不配置,如果不配置,默认用的是core-site.xml里配置的hadoop.tmp.dir的路径-->
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///usr/local/modules/hadoop-2.7.7/tmp/datanode</value>
</property>
<!--配置block副本数量-->
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<!--设置 hdfs 的操作权限, false 表示任何用户都可以在 hdfs 上操作文件-->
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
</configuration>
配置 mapred-site.xml 文件
<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
配置 yarn-site.xml 文件
<configuration>
<!-- Site specific YARN configuration properties -->
<!--开启YARN HA -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--指定两个 resourcemanager 的名称-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--配置rm1,rm2的主机-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>spark3</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>spark2</value>
</property>
<!--开启yarn恢复机制-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!--配置zookeeper的地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>spark1:2181,spark2:2181,spark3:2181</value>
<description>For multiple zk services, separate them with comma</description>
</property>
<!--指定YARN HA的名称-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-ha</value>
</property>
<property>
<!--指定yarn的老大resoucemanager的地址-->
<name>yarn.resourcemanager.hostname</name>
<value>spark1</value>
</property>
<!--NodeManager 获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
配置 slaves 文件
创建配置目录
根据配置文件,创建相关的文件夹,用来存放对应数据
在 /usr/local/modules/hadoop-2.7.7/下创建 tmp目录
mkdir tmp
在 /usr/local/modules/hadoop-2.7.7/ 下创建 journal
mkdir journal
在 /usr/local/modules/hadoop-2.7.7/tmp 下创建 namenode 和dataname
mkdir namenode
mkdir datanode
通过scp 命令 将hadoop传给另外两台服务器
scp -r hadoop-2.7.7/ hadoop@spark2:/usr/local/modules/
scp -r hadoop-2.7.7/ hadoop@spark3:/usr/local/modules/
在spark2 和spark3也配置 HADOOP_HOME 和 HADOOP_CONF_DIR 的环境变量
启动进程
注: 初始化启动命令和之后启动的命令是不同的,要按照下面的顺序执行,之后的命令就容易多了
1、首先启动各个节点的Zookeeper,在各个节点上执行以下命令:
bin/zkServer.sh start
2、在某一个namenode节点执行如下命令,创建命名空间
hdfs zkfc -formatZK
3、在每个journalnode节点用如下命令启动journalnode
sbin/hadoop-daemon.sh start journalnode
4、在主namenode节点格式化namenode和journalnode目录
hdfs namenode -format ns
5、在主namenode节点启动namenode进程
sbin/hadoop-daemon.sh start namenode
6、在备namenode节点执行第一行命令,这个是把备namenode节点的目录格式化并把元数据从主namenode节点copy过来,并且这个命令不会把journalnode目录再格式化了!然后用第二个命令启动备namenode进程!
hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode
7、在两个namenode节点都执行以下命令
sbin/hadoop-daemon.sh start zkfc
8、在所有datanode节点都执行以下命令启动datanode
sbin/hadoop-daemon.sh start datanode
spark1的进程
spark2的进程
spark3的进程
9、启动yarn的resourcemanager的进程
在spark3上启动resourcemanager
./yarn-daemon.sh start resourcemanager
在spark2上启动resourcemanager
./yarn-daemon.sh start resourcemanager
在三台服务器上启动nodemanager
./yarn-daemon.sh start nodemanager
spark1的进程
spark2的进程
spark3的进程
可以查看resourcemanager的主从
yarn rmadmin -getServiceState rm1
yarn rmadmin -getServiceState rm2
到此为止hadoop的配置就OK了
注:
我为了测试yarn的HA,将spark3的resourcemanager kill 了,所以上图yarn的active是spark2
之后重启集群可以用下面命令
在spark1上执行
start-dfs.sh
在spark1和spark2上执行
sbin/hadoop-daemon.sh start zkfc
在spark2上执行(由于spark3的免密登录有点问题,所以在spark2上启动的)
start-yarn.sh
在spark3上单独启动resourcemanager
sbin/yarn-daemon.sh start resourcemanager
如果想spark3的resourcemanager为active 把spark2的resourcemanager重启一下就行了
日常启停命令
start-all.sh
start-dfs.sh
start-yarn.sh
stop-all.sh
stop-dfs.sh
stop-yarn.sh