OpenMMlab--MMSegmentation重温图像分割经典方法 第一次接触到图像分割,还是比赛的时候,题目是医学图像相关的,都是结合的深度学习去解决,这与上的数字图像处理的课的内容差距相当大,对于比赛几乎没啥帮助,记忆犹新。当时比赛的模型用到的还是经典的UNet去解决,然而现在做UNet工作各种改进版本的已经遍地开花了,甚至还有把扩散模型结合UNet的神奇变种。
OpenMMlab--MMDetection目标检测代码学习小记 大部分时间,在做算法工程落地的时候,我们并没有像研究者那样执着于算法实现是怎么回事,具体是怎么实现的,大部分我们都考虑的是算法代码为什么出现Erro,相比于后者,大概前者太消耗脑细胞了罢。局限的知识使得我们对更深层次的东西的认知显得心有余而力不足。
OpenMMlab--MMDetection目标检测 目标检测算法是近年的热门研究方向,特别是YOLO的兴起,掀起了江湖的腥风血雨。从R-CNN到YOLO,Swin Transformer,CenterNet,各种奇思妙想的构思,不断推动了发展。
OpenMMlab--MMClassification 图像分类 时隔半年,重新做图像分类,而诸如MMClassification此类集成度高,而且定期更新维护的,大大减少了图像分类工作不必要的麻烦。重温这些工作,又重新把这些工作之前遇到的雷区踩了一边,大大加深了印象。
AI人工智能发展的经典算法 近年来,计算和信息技术(IT)飞速发展,人工智能(AI)因深度学习的空前普及和成功而确立为人类探索机器智能的前沿领域。基于此,产生了一系列突破性的研究成果,包括 Yann LeCun 提出的卷积神经网络 (CNN) 和 Yoshua Bengio 在深度学习因果推理领域的贡献。
模块安装问题记录 BP算法学习之路学习目标:初步掌握BP算法BP算法要求对于高数线代的实际应用学习内容:1、 搭建 BP算法的python开发环境2、 了解神经网络基本原理3、 基于已有的轮子重造学习笔记1.BP原理反向传播(Backpropagation,缩写为BP)一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法计算对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 在神经网络上执行梯度下降法的主要算法。该算法会先按前向传播