- 博客(6)
- 收藏
- 关注
原创 3D Sketching using Multi-View Deep Volumetric Prediction
sketch到体素的一篇,特点是通过单张线框图生成体素模型之后,用户可以继续输入其他视角的线框图来对模型进行进一步精细化。架构在论文中,他们训练了两个神经网络,一个single-view CNN用于初次预测,一个updater CNN用于更新模型。两个神经网络的架构基本是一样,都使用了unet架构,唯一的差别是updater CNN在encode的第二层contact了之前预测的体素数据(经...
2019-04-26 21:37:56 401
原创 本周论文阅读总结
【粗读】Shape Synthesis from Sketches viaProcedural Models and Convolutional Networkssketches到 procedural Model的一篇论文,最后的结果三维模型是通过类似形状文法的方法生成的,所以有设定好的固定数量参数的模型,草图送进CNN最后输出模型参数。比如篮子的模型参数有:底面形状、侧面形状、侧壁上的单元参...
2019-04-24 15:40:10 782
转载 两篇img2struct论文
两篇img2struct论文【ICCV2017】3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks【CVPR2018】Im2Struct: Recovering 3D Shape Structure from a Single RGB Image概述这两篇论文,都是输入图片,然后输出由多个长方体拼成的三维模...
2019-04-24 15:37:20 521
原创 GRASS: Generative Recursive Autoencoders for Shape Structures
RvNN auto-encoder pre-training这个基于rvnn的autoencoder结构很神奇,它总共有三个encode和三个decode。decode其中boxDecode是叶子节点对应的decode,输入n-D 向量,输出目标的12-D参数,也就是box的尺寸、位置、旋转那些啦而adjDecode和SymDecode则都是继续开枝散叶。adjDecode是输入n-D向...
2019-04-24 14:51:21 974
原创 强化学习用于流体形状生成
论文:Flow Shape Design for Microfluidic Devices Using Deep Reinforcement Learning这篇论文解决的问题是微流体的形状生成过程的设计,似乎是微流体在通过有障碍物的微管时,就会不可逆的变形成某一形状(形状取决于微管中的障碍物位置和形状),这一技术可应用于生物领域、化学反应控制、材料制造等方面。当然这不是重点,这篇论文的目标就是...
2018-12-20 15:09:57 371
原创 强化学习用于 深度神经网络架构搜寻
论文:NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING随着深度神经网络在各应用场景上大放异彩,如何自动搜索优秀的深度网络架构以及超参,也成为了一个热门研究点。本文介绍的论文就是通过强化学习,来进行深度网络的架构搜索。全文的整体概览如下图所示,一个基于RNN的controller用于搜索和生成架构,然后使用强化学习中的polic...
2018-12-20 03:29:09 1435
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人