3.30 leetcode K 个高频元素(小顶堆/快速排序,中等,new PriorityQueue<int[]>(new Comparator<int[]>() )

本文介绍如何使用Java的HashMap和PriorityQueue数据结构,解决求解数组中出现频率最高的前k个元素问题。通过HashMap统计每个元素出现次数,然后利用优先队列按频率排序,最终返回前k个最常见的元素。
摘要由CSDN通过智能技术生成

在这里插入图片描述

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer, Integer> map = new HashMap<Integer,Integer>();
        int[] re = new int[k];
        List<Integer> list = new ArrayList<Integer>();
        for(int shu: nums)
        {
            if(!map.containsKey(shu))
            {
                map.put(shu, 1);
            }
            else
            {
                map.put(shu,map.get(shu)+1);
            }
            
        }
        
        Set<Integer> keySet = map.keySet();
        Iterator<Integer> it = keySet.iterator();
        while(it.hasNext())
        {
            Integer shu = it.next();
            Integer cishu = map.get(shu);
            System.out.println("shu:"+shu);
            System.out.println("cishu:"+cishu);
            list.add(cishu);
        }
        Collections.sort(list);
      //list只存放频率前k高的元素次数
        list = list.subList(list.size()-k,list.size());
        System.out.println(" list:"+ list);
        /*
        遍历一遍map的次数,value,返回
        re[0] = maplist.get(0)
        */
        int len = list.size()-1;
        int i = 0;
        Iterator<Integer> it2 = keySet.iterator();
        while(it2.hasNext() && k>0)
        {
            Integer shu = it2.next();
            Integer cishu = map.get(shu);
             System.out.println("shu:"+shu);
            System.out.println("cishu:"+cishu);
              //遍历map, key为数,value为对应的次数,如果次数存在List中,则加入最后的结果中
            if(list.contains(cishu))
              
            {
                
                /*System.out.println("list.get(len-i):"+list.get(len-i));
                System.out.println("xxshu:"+shu);
                System.out.println("xxcishu:"+cishu);
                */
                re[i] = shu;
                i++;
                k--;
            }
        
        
        }
        return re;
    }
}

官方:堆排序(优先级队列,先入先出)

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer, Integer> occurrences = new HashMap<Integer, Integer>();
        for (int num : nums) {
            occurrences.put(num, occurrences.getOrDefault(num, 0) + 1);
        }

        // int[] 的第一个元素代表数组的值,第二个元素代表了该值出现的次数
        PriorityQueue<int[]> queue = new PriorityQueue<int[]>(new Comparator<int[]>() {
            public int compare(int[] m, int[] n) {
                return m[1] - n[1];
            }
        });
        for (Map.Entry<Integer, Integer> entry : occurrences.entrySet()) {
            int num = entry.getKey(), count = entry.getValue();
            if (queue.size() == k) {
                if (queue.peek()[1] < count) {
                    queue.poll();
                    queue.offer(new int[]{num, count});
                }
            } else {
                queue.offer(new int[]{num, count});
            }
        }
        int[] ret = new int[k];
        for (int i = 0; i < k; ++i) {
            ret[i] = queue.poll()[0];
        }
        return ret;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值