回归分析控制混杂的自变量应该如何筛选呢?

在SCI论文中,常常会见到model1,model2,model3.....这样的表述,每个model调整的混杂自变量会有所不同,具体研究者是如何筛选的呢?有什么需要注意的地方的吗?

这里通过几份示例简单和大家介绍一下多模型策略分析中,混杂自变量的选取方式:

示例1:

  • 只有2个模型,Unadjusted模型就是焦点暴露与结局的单因素回归

  • Adjusted模型是调整其他全部混杂自变量的多因素回归。

示例2:

  • 有3个模型,Crude model是焦点暴露与结局的单因素回归

  • Model1校正了性别与年龄

  • Model3除年龄性别外还校正了种族,教育,吸烟,饮酒等其他混杂自变量。

图片

示例3:

  • 有4个模型,Model1是焦点暴露与结局的单因素回归,

  • Model2校正了性别、年龄、种族、婚姻状况、教育、收入

  • Model3在Model2基础上额外校正了吸烟、饮酒、BMI、糖尿病、高血压

  • Model4在Model3基础上额外校正了尿肌酐、总胆固醇、血清可替宁。

图片

看完上面3个典型示例,不知道大家有没有发现一些规律:

  • 第一个Model都是焦点暴露和结局的单因素回归结果(它可以叫Unadjusted、Crude model、Model1......);

  • 每个Model都是在前一个模型基础上额外校正混杂变量,是包含关系;

  • 最后一个Model需要校正全部的混杂变量;

  • 中间Model混杂变量的选择不那么严格,一般来说第二个Model会校正人口学变量,或者根据混杂变量的不同类型,分开校正。像示例3,协变量较多的情况就分开校正了人口学变量、不良习惯与慢病、化验指标几类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值