速配分数

本文通过一段简陋但有趣的代码,探讨了任意一对人类结婚的概率问题。通过对特定数值范围内的笔画数进行迭代计算,最终得出令人惊讶的结果——40%的概率。这一发现虽基于简单的数学游戏,却引发了对概率论和人类社会学的深思。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两天在空间里看到这样一个东西

就好奇写了段代码计算

计算代码如下

private static int calc(int...nums) {
	for (int i = nums.length - 1; i > 0; i--) {
		for (int j = 0; j < i; j++) {
			nums[j] = Math.abs(nums[j] - nums[j + 1]);
//			System.out.print(nums[j] + " ");
		}
//		System.out.println();
	}
	return nums[0];
}

嗯,很简陋

鉴于大多数人的笔画集中在10 - 15,就用这个进行测试

int[] nums = new int[10];
int sum = 0;
for (int i = 10; i < 15; i++) {
	System.out.print(i + " ");
	for (int j = 10; j < 15; j++) {
		for (int j2 = 10; j2 < 15; j2++) {
			for (int k = 10; k < 15; k++) {
				for (int k2 = 10; k2 < 15; k2++) {
					for (int l = 10; l < 15; l++) {
						nums[calc(i, j, j2, k, k2, l)] ++;
						sum ++;
					}
				}
			}
		}
	}
}
System.out.println("\nsum = " + sum);
System.out.println(((double)nums[0]/sum) * 100 + "%");
for (int i = 0; i < 20; i++) {
	System.out.println(i + " - " + nums[i]);
}

结果如下

10 11 12 13 14 
sum = 15625
39.8656%
0 - 6229
1 - 7548
2 - 1564
3 - 252
4 - 32
5 - 0
6 - 0
7 - 0
8 - 0
9 - 0

结果表明,任意一对人类结婚的概率为40%!

哈哈哈哈哈啊哈哈哈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值