数的划分问题(二)
题目描述
把正整数N分解成M个非负整数的和,即使M个数相同但顺序不同也认为是不同的方案,要求总方案数。如3=1+2跟3=2+1是两个不同的方案。
输入
第一行输入两个整数(1<=M<=N<=30)。
输出
输出一个整数表示方案数。
样例输入
2 3
样例输出
6
数据范围限制
1<=M<=N<=30
做题地址:CCF中学生程序设计在线评测系统-1186. 数的划分问题(二)(需要注册)
此题跟它的前身(参见数的划分问题(一))一样,同属DP题目。
我们可以分析一下它与 数的划分问题(一) 的区别,以便更好地借(chao)鉴(xi)
不同点1:分解成M个非负整数的和
不同点2:1<=M<=N<=30
现在可以愉快的借(chao)鉴(xi)了
~\(≧▽≦)/~
深度优先搜索
深搜借(chao)鉴(xi)很简单,只要把函数循环起始的1改成0就行了。
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
int n,m,tot;
void dfs(int t,int sum)
{
if(t==m && sum==0)
{
tot++;
return ;
}
if(t>m || sum<0)
return ;
for(int i=0;i<=sum;i++)
dfs(t+1,sum-i);
}
int main()
{
scanf("%d %d",&n,&m);
dfs(0,n);
printf("%d\n",tot);
}
JUST LIKE THIS
SO EASY
RIGHT?
BUT……
/*
结果:时间超限
运行时间:52 ms
运行空间:296 KB
代码长度:305 bytes
*/
(╯‵□′)╯︵┻━┻
还是记忆化搜索吧
记忆化搜索跟搜索一样,只把函数循环起始的1改成0。
#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
int n,m;
long long f[33][33];
long long int F(int t,int sum)
{
long long tot=0;
if(f[t][sum]) return f[t][sum];
if(t==m && sum==0)
tot++;
if(t>m || sum<0)
return 0;
for(int i=0;i<=sum;i++)
tot+=F(t+1,sum-i);
return f[t][sum]=tot;
}
int main()
{
scanf("%d %d",&n,&m);
printf("%lld\n",F(0,n));
}
AND THEN……
/*
结果:评测通过
运行时间:0 ms
运行空间:304 KB
代码长度:384 bytes
*/
莫名其妙的AC了?
( ⊙ o ⊙ )蛤?AC了?
IN THE END
你一定想问我,一道DP题为何不用DP做?
我认为这个问题很水
BECAUSE
我懒啊!