深度学习,人工智能经典资料
深度学习,人工智能经典资料
电力巡检行业,防振锤数据集
电力行业,由巡检机器人在高压塔的地线上作业时云台采集到的金具图片,非无人机拍摄。清洗整理成VOC格式的防振锤数据集,附带xml格式的标签文件。所有图像均已手工标注过bbox,可直接用于深度学习目标检测算法的训练和测试。
电力巡检行业,防振锤数据集
电力行业,由巡检机器人在高压塔的地线上作业时云台采集到的金具图片,非无人机拍摄。清洗整理成VOC格式的防振锤数据集,附带xml格式的标签文件。所有图像均已手工标注过bbox,可直接用于深度学习目标检测算法的训练和测试。
自爆绝缘子语义分割,deeplab_v3+完整pytorch工程代码
采用pytorch深度学习框架实现的deeplab_v3+语义分割任务,谷歌deeplab系列性能最好也是最复杂的一个版本,可满足绝大部分基础语义分割场景。主干网络在算力不足时可选择轻量版的mobilenet_v2,算力足够时可选择Xception。
deeplab_v3+:用一个简单有效的解码器模块扩展deeplab_v3优化细分结果,尤其是沿目标边界。此外,在这种编码器 - 解码器结构中,可以通过空洞卷积任意地控制所提取的编码器特征的分辨率,以平衡准确率和运行时间。
本代码可作为入门计算机视觉语义分割任务时的学习了解用处,也可作为高校大学生的毕业课程设计使用。
训练集标签csv文件,检测是否佩戴绝缘手套
训练集的各类标签。如果采用VOC格式训练,需要自行转换为xml文件
在该场景提供的训练数据集中,包含的具体标签及解释见下:
badge:监护袖章(只识别红色修章)
person:图中出现的所有在场人员
glove:绝缘手套(橡胶材质)
wrongglove:未佩戴绝缘手套(其他手套或裸露手掌)
operatingbar:操作杆
powerchecker:验电笔
数据集2,检测是否佩戴绝缘手套
该资源为数据集,不含代码。由于C站资源传输限制,数据集太大因此分为3个部分。
电网作业人员每天需要在现场进行验电断电操作,为保证操作安全,要求验电人员必须佩戴橡胶绝缘手套才可进行验电停电等操作。同时,现场需要有监护人员在旁监督验电人员的动作规范,以及在意外情况发生时及时报警救助。
在该场景提供的训练数据集中,包含的具体标签及解释见下:
badge:监护袖章(只识别红色修章)
person:图中出现的所有在场人员
glove:绝缘手套(橡胶材质)
wrongglove:未佩戴绝缘手套(其他手套或裸露手掌)
operatingbar:操作杆
powerchecker:验电笔
数据集3,检测是否佩戴绝缘手套
该资源为数据集,不含代码。由于C站资源传输限制,数据集太大因此分为3个部分。
电网作业人员每天需要在现场进行验电断电操作,为保证操作安全,要求验电人员必须佩戴橡胶绝缘手套才可进行验电停电等操作。同时,现场需要有监护人员在旁监督验电人员的动作规范,以及在意外情况发生时及时报警救助。
在该场景提供的训练数据集中,包含的具体标签及解释见下:
badge:监护袖章(只识别红色修章)
person:图中出现的所有在场人员
glove:绝缘手套(橡胶材质)
wrongglove:未佩戴绝缘手套(其他手套或裸露手掌)
operatingbar:操作杆
powerchecker:验电笔
电力行业目标检测整套工程。yolox检测自爆绝缘子
当前yolo系列性能最好的目标检测算法!!!(同时轻微降点实现端到端检测),相对于yolo_v4,yolo_v5,pp_yolo等性能较好的算法,在速度仅仅增加1ms左右的情况下,mAP精度实现0.8-2.9左右的涨点。本算法是根据旷视科技开源算法yolox复现的pytorch版本,内含各种对数据集处理,裁剪,数据增强的脚本,标注好的数据集,推理结果以及详细的使用说明,可轻松迁移到其他例如车牌人脸虫害识别,遥感、缺陷、自动驾驶等检测业务场景。也可作为高校大学生的毕业课程设计使用。
自爆绝缘子语义分割数据集
2021.4.22 更新了全部标注的json文件!!!
另有可跑通的整套deeplab_v3+的pytorch工程代码
电力巡检行业特殊数据集,由无人机或巡检机器人在塔内作业时拍摄得到,可用于缺陷检测玻璃绝缘子串是否自爆。数据集为4k分辨率的图像及对应的标签,每张均采用labelme软件,花费大量时间手工标注(标注不易请理解),mask格式为8位灰度图,像素值为(1,1,1),视觉效果为看不到物体的黑色但是有像素值。
绝缘子自爆点目标检测数据集
电力巡检行业特殊数据集,由无人机或巡检机器人在塔内作业时拍摄得到,可用于缺陷检测玻璃绝缘子串是否自爆,作为语义分割后续的目标检测任务。数据集全部为512×512分辨率的图像及对应的标签,每张带自爆点的图像都是由4k原图采用滑动窗口截取图像块保存,采用labelImg软件手工标注。私聊可提供一整套相应的pytorch工程代码
电力行业塔内鸟巢数据集
电力巡检行业特殊数据集,花费大量时间收集到。由无人机或巡检机器人在塔内作业时拍摄得到,可用于缺陷检测各种不同类型的塔中是否包含鸟巢。数据集为云台拍摄的4k分辨率的图像。私聊可提供一整套相应的pytorch工程代码。
深度学习入门:基于Python的理论与实现+python编程:从入门到实践 高清中文版PDF.zip
很出名也是很适合初学python和深度学习的两本书。个人认为非常好的两本入门书,不需要高深的编程技巧和高数矩阵知识。其中“鱼书”比“花书”(圣经Deep Learning)要简单不少,非常推荐!!! 书中使用 Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。
APUE电子版
Unix环境高级编程,高清电子版,非常好的书,网络编程的圣经不过有点厚