- 博客(6)
- 收藏
- 关注
翻译 Neural Inverse Rendering for General Reflectance Photometric Stereo阅读
用于一般反射光度立体模型的逆渲染神经网络摘要我们提出了一种用于光度立体(Woodham,1980)的新型卷积神经网络体系结构,该问题是从在不同照明下观察到的多个图像中恢复3D对象表面法线的问题。尽管它在计算机视觉领域具有悠久的历史,但是对于具有未知的一般反射特性(BRDF)的表面,该问题仍然显示出基本的挑战。利用深层神经网络来学习复杂的反射模型是有前途的,但是由于难以获得准确的GroundTr...
2020-01-09 16:01:59 1531
原创 Deep Photometric Stereo Network
摘要本文提出了一种基于深度学习的光度立体方法。光度立体的主要困难之一是设计合适的反射模型,该模型既可以表示真实的反射率,又可以在导出表面法线方面在计算上易于处理。与以前的依赖于简化的参数化图像形成模型(例如Lambert模型)的光度学立体方法不同,本文提出的方法旨在通过使用深度神经网络在复杂的反射率观测值与表面法线之间建立灵活的映射。结果,我们提出了一种深光度立体网络(DPSN),该网络在变化的...
2019-12-29 21:19:18 931
原创 CNN-PS: CNN-Based Photometric Stereo for General Non-convex Surfaces 2018ECCV
摘要大多数传统的光度立体算法反过来解决了基于BRDF的图像形成模型。然而,由于在非凸表面上的全局光传播,实际的成像过程通常要复杂得多。本文提出了一种光度立体网络,该网络可以直接学习光度立体输入与场景表面法向之间的关系。为了处理无序输入,任意数量的输入图像问题,我们将所有输入数据合并到中间视图(称为观测图),该中间图具有固定的形状,可以馈入CNN。为了改善训练和预测,我们考虑了从各向同性约束得出...
2019-12-22 12:47:28 1196
翻译 SIGGRAPH 2018.Deep Image-Based Relighting from Optimal Sparse Samples.
从最佳稀疏样本进行基于图像的深度重光照网络我们提出了一种基于图像的重光照方法,该方法可以仅从预定义的定向光下捕获的五幅图像中,从可见半球的新的,远距离照明下合成场景的外观。我们的方法使用深度卷积神经网络从这五张图像中回归出新图像。此照明网络是在一个大型合成数据集上训练的,该数据集由程序生成具有真实反射率的形状组成。我们表明,通过将自定义设计的采样网络与重光照网络相结合,我们可以共同学习最佳的输入...
2019-12-08 18:18:31 1135
原创 2019CVPR.Learning to Minify Photometric Stereo
摘要通过给定在不同照明条件下获取的一组图像,光度立体可以估计表面法线。为了处理涉及图像形成过程的各种因素,最近的光度立体方法需要大量图像作为输入。我们提出了一种方法,该方法可以通过学习在不同照明条件下最有用的图像来显着减少对图像数量的需求。为此,我们使用深度学习框架来自动学习输入时所需的关键照明条件。此外,我们提出了一种可以合成投射阴影的遮挡层,可以有效地提高估计精度。我们在具有挑战性的现实条件...
2019-11-30 20:17:57 923
翻译 ICCV2019光度立体论文SPLINE-Net: Sparse Photometric Stereo through Lighting and Normal Networks.阅读笔记.
前言由于目前研究方向是光度立体方向,并且最近要和双目,深度学习结合一下,就找了最新的论文来看,这篇是iccv2019北大施柏鑫团队的最新论文,和之前一样,重点依然放在用深度学习解决非郎勃模型的光度立体问题上,下面结合自己的想法对这篇论文做个总结。首先写几个相关知识点:漫反射又称朗勃(Lambert)反射,也称各向同性反射。这是经典光度立体用到的模型。而事实上现实世界很难有理想的漫反射模型,大...
2019-11-07 10:49:33 1712 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人