机器学习
文章平均质量分 98
QRick
Unsupervised Learner
展开
-
傻子都能看懂的SVM
文章目录SVM简介物理世界角度理解svm知识前提0-数学基本知识1-几何间隔与函数间隔2-拉格朗日乘子法与KKT条件如何理解拉格朗日乘子法什么是负梯度为什么λ\lambdaλ要大于0?3-拉格朗日对偶问题对偶问题的性质什么是对偶空间如何求解一个线性规划的对偶问题?2-SVM 目标函数与约束的推导数据集如何去除优化公式中的绝对值为优化函数添加约束项进一步化简复杂的优化目标如何求解优化函数?求解minw,bL(w,b,α)\min \limits_{w,b}L(w,b,\alpha)w,bminL(w,b,原创 2020-10-24 00:09:41 · 1663 阅读 · 4 评论 -
Pytorch-TIMIT说话人识别代码-Sincnet网络 简洁版本(适合黑白盒攻击使用)
Pytorch-TIMIT说话人识别先上链接:码云(包括代码和模型以及测试数据):https://gitee.com/djc_QRICK/timit-pytorch简化删掉了很多乱七八糟的东西,剩下的就是非常纯净的代码和模型整个代码的功能仅仅包括模型的输入和预测,以及预先训练的模型模型采用Sincnet数据集采用TIMIT整体上来说这是个CSI系统也就是闭集的说话人识别适合想做黑白盒攻击的朋友们使用基于pytorch1.6 最好有cuda,没有cuda需要微调代码(影响不大)效果图原创 2020-10-15 22:53:14 · 2369 阅读 · 9 评论 -
信息论中的香农熵、条件熵、最大熵、相对熵、交叉熵理解
信息论基础前几天朋友问我决策树中的香农熵公式来源的理解,我很早以前看过,但是发现现在又什么都回答不出了,所以决定补一下信息论的基础。这里记录下自己的理解信息熵、香农熵信息熵也叫香农熵信息熵用于表示随机变量不确定性,即信息熵越大则变量的不确定性越大,即包含的信息量越大先来看看信息熵的定义设X是离散型随机变量,分布概率如下P(X=xk)=pk,k∈(1,2,⋯ ,n−1,n)P(X=x_k)=p_k,\quad k \in (1,2,\cdots,n-1,n)P(X=xk)=pk,k∈(1,原创 2020-10-08 11:27:04 · 3350 阅读 · 2 评论 -
Pytorch黑盒攻击音频分类网络(目标与非目标攻击)实验结果与代码
基于Pytorch的黑盒攻击攻击的模型攻击的类型是无目标攻击,改天再尝试下目标攻击攻击的模型是我之前训练好的一个分类网络参考下面这篇博客https://blog.csdn.net/qq_37633207/article/details/108926652攻击的效果攻击效果还不错,基本上几次迭代就攻击好了,可能是自己训练的网络比较垃圾,自己训练的分类网络精度为93.499%,我太难了先来两张攻击的效果图首先是原来的音频,我这里是随机选取一个音频波形图对比再来一张图片,由原创 2020-10-06 19:40:43 · 2826 阅读 · 4 评论 -
Pytorch音频分类
pytorch实现音频分类代码这两天学习了下pytorch,动手练习练习数据集:来源是KAGGLE的一个音频分类的比赛数据集介绍:(需要梯子)https://urbansounddataset.weebly.com/urbansound8k.html数据集分为10类:代表不同的声音在我下载的文件里面是这样的结构 外面是一个train 里面是train.csv 以及Train Train里面包含了一堆音频WAV文件训练集文件结构train.csv文件结构Keras实现话说还是Ke原创 2020-10-05 11:56:26 · 6902 阅读 · 7 评论 -
Pytorch常用函数(更新中)
一些自己常用的pytorch函数整理建议直接Ctrl+f搜索torch.unsqueeze 维度增加torch.unsqueeze(torch.Tensorf,axis)常用形式torch.unsqueeze(x,0)#最外维度+1这个函数功能等价于numpy的expand_dimtorch.Tensor.mm矩阵相乘设a=torch.ones(1,2)设b=torch.rand(2,2)矩阵点乘直接a*b就行矩阵乘法就是a.mm(b)torch.topk(a,k) 获取a中原创 2020-10-02 22:19:08 · 635 阅读 · 0 评论 -
BP神经网络的详细推导 与 完整代码
文章目录BP推导全过程一些变量的含义BP推导全过程BP的整个过程还是很严谨的一些变量的含义这里的的网络采用三层感知机结构以简单的sigmod函数如为例:f(x)=11+e−xf(x)′=f(x)(1−f(x))f (x)=\frac {1}{1+e^{-x}}\\f(x)'=f(x)(1-f(x))f(x)=1+e−x1f(x)′=f(x)(1−f(x))下面定义一些变量输入向量X=(x1,x2,⋯xn)T隐层输出向量Y=(y1,y2,⋯ym)T输入层到隐层的权重VV=()V=[v原创 2020-10-01 20:31:55 · 3564 阅读 · 5 评论 -
《机器学习实战中》区分垃圾邮寄的思路整理
朴素贝叶斯算法原书注重实战,但是想要透彻理解很麻烦,这里把大致的流程和模型给出来,希望对大家有帮助,也是我思路的整理先上贝叶斯公式:p(y|x)=(p(x|y)P(y))/p(x)优点:在数据量较少时候依然有效缺点:对数据的输入格式有严格的标准,适用于标称数据要求特征值相对独立算法核心思想:假设现在给你一篇文章:属于A类的概率是P(A),属于B类的概率是P(B),若P(原创 2018-01-27 11:38:21 · 308 阅读 · 0 评论 -
机器学习实战脱坑手册-贝叶斯(超详细注释)
机器学习实战的坑实战太多了,这里把贝叶斯这一章的坑都将一下。首先是有个报错'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence,解决办法找到你的email\ham\23.txt,zh找到SciFinance?把问号换成空格即可报错2:'range' object doesn't supp原创 2018-01-26 14:37:27 · 768 阅读 · 2 评论 -
《机器学习实战》-K邻近算法
K邻近算法由于《机器学习实战》中用的是python2+,而我用的是python3+,所以在学习中产生了很多bug又因为对各种函数不是太了解,每个都要具体查,很麻烦。这里对每个函数都做了大致的注释,Bug也都改了。拿来直接运行话不多说,直接上代码,注释肯不好(望谅解)KNN.py文件from numpy import *import operator#功能****#原创 2018-01-22 22:05:40 · 366 阅读 · 0 评论