1、ETL的位置:介于数据与数据仓库之间
2、ETL的概念:数据抽取、转换、装载的过程,它是构建数据仓库的重要环节。
3、ETL的作用:负责将分布的、异构数据源中的数据如关系数据、平面数据文件等取到临时中间层(ods层)后进行清洗、转换、集成,最后加载到数据仓库(dw层)或者数据集市(dw层)中,成为联机分析处理、数据挖掘的基础。
4、数据的抽取
(1)与存放dw的数据库系统相同的数据源处理方法
一般情况下,DBMS(SQLServer、Oracle)都会提供数据库链接功能,在dw数据库服务器和原业务系统之间建立直接的关系,就可以写Select语句进行直接访问。
(2)与dw数据库系统不同的数据源的处理方法
一般情况下,通过ODBC的方式建立数据库链接,如SQLServer和Oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将数据导出成.txt或.xls文件,然后再将这些源系统文件导入到ODS中。另一种方法是通过程序接口来完成。
(3)文件类型数据源
可将数据导入到指定数据库后再抽取或者借助工具实现,如SQLServer的SSIS服务的平面数据源和平面目标等组件,导入ODS中。
(4)增量更新问题
一般情况下,业务系统会记录业务发生等时间,可以用来做增量的标志,每次抽取之前首先判断ODS中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。
5、数据的清洗转换
一般情况下,数据仓库分为ods、dw两部分。通常是从业务系统到ods做清洗,将脏数据和不完整的数据过滤掉,在ods到dw的转换过程中进行业务规则的计算和聚合。
(1)数据清洗

本文介绍了ETL在数据仓库中的关键角色,包括数据抽取、转换和加载的详细过程。探讨了不同数据源的处理方法,如直接数据库链接、ODBC、文件导入,并解决了增量更新的问题。此外,数据清洗和转换的步骤也得到了阐述,强调了数据质量的重要性。最后,列举了ETL的实现方式,包括工具、SQL编码和结合两者的方法。
最低0.47元/天 解锁文章
987

被折叠的 条评论
为什么被折叠?



