原题:
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定N = 5, 排列是1、3、2、4、5。则:
1的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
类似原因,4和5都可能是主元。
因此,有3个元素可能是主元。
输入格式:
输入在第1行中给出一个正整数N(<= 105); 第2行是空格分隔的N个不同的正整数,每个数不超过109。
输出格式:
在第1行中输出有可能是主元的元素个数;在第2行中按递增顺序输出这些元素,其间以1个空格分隔,行末不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路:
先用数组存储排序后的数据,再用一个数组存储从第一个数到当前位置最大的数据。当原数组、排序数组、最大值数组三者同一下标数据相同时,即为主元。
这测试点比较有坑,不最后加一个回车会有点过不去。
代码
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int n;
cin>>n;
int max=0;
int a[n],b[n],c[n],d[n],cnt=0;
for(int i=0;i<n;i++){
cin>>a[i];
b[i]=a[i];
if(a[i]>max) max=a[i];
c[i]=max;
}
sort(b,b+n);
for(int i=0;i<n;i++){
if( a[i]==b[i] && b[i]==c[i] ){
d[cnt++]=a[i];
}
}
cout<<cnt<<endl;
for(int i=0;i<cnt;i++){
if(i==0) cout<<d[i];
else cout<<" "<<d[i];
}
cout<<endl;
}