PAT 甲级 1002 A+B for Polynomials

This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N1​ aN1​​ N2​ aN2​​ ... NK​ aNK​​

where K is the number of nonzero terms in the polynomial, Ni​ and aNi​​ (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤NK​<⋯<N2​<N1​≤1000.

Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

结尾无空行

Sample Output:

3 2 1.5 1 2.9 0 3.2

题目大意

总之就是让你模拟两个多项式的加法。

题目分析

这道题的唯一需要考虑的点就是,怎么存储这两个多项式。

当然很容易想到用两个数组,一个存储指数exp一个存储系数coef,但是嘞,这种存储方式往往会浪费大量的空间,因为数组的大小是由最高项次数决定的,但是又不是每个多项式都会有那么多项。如果多项式是x^1000+1 ,数组存储的空间利用率都达不到1%

所以我们当然要用链表存储!!

但是我写错了

反正这也只是萌新小白初学者的记录博客 大家就别想着找答案了

思路就是用数组存储然后挨个加就完事儿了奥 自个儿去写 肘吧肘吧

柳大佬的AC代码(数组存储)

#include <iostream>
using namespace std;
int main()
{
    float c[1001]{0};
    int m,n,t;
    float num;
    scanf("%d", &m);
    for (int i = 0; i < m;i++)
    {
        scanf("%d%f", &t, &num);
        c[t] += num;
    }
    scanf("%d", &n);
    for (int i = 0; i < n;i++)
    {
        scanf("%d%f", &t, &num);
        c[t] += num;   
    }
    int cnt = 0;
    for (int i = 0; i < 1001;i++)
    {
        if(c[i]!=0)
            cnt++;
    }
    printf("%d", cnt);
    for (int i = 0; i >= 0;i--)
    {
        if(c[i]!=0.0)
            printf("%d %.1f", i, c[i]);
    }
    return 0;
}

3/5AC代码

#include <iostream>
#include <list>
#include <vector>
using namespace std;
list<vector<double>> pol1;
list<vector<double>> pol2;
void print(list<vector<double>>);
int main()
{
    int N;
    double exp, coef;
    cin >> N;
    for (int i = 0; i < N; i++)
    {
        cin >> exp >> coef;
        pol1.push_back({ exp,coef });
    }
    cin >> N;
    for (int i = 0; i < N; i++)
    {
        cin >> exp >> coef;
        pol2.push_back({ exp,coef });
    }
    list<vector<double>> pol3;
    auto i = pol1.begin();
    auto j = pol2.begin();
    while (i != pol1.end() || j != pol2.end())
    {
        if (i == pol1.end()) {
            pol3.push_back({ (*j)[0], (*j)[1] });
            j++;
        }
        else if (j == pol2.end()) 
        {
            pol3.push_back({ (*i)[0],(*i)[1] });
            i++;
        }
        else if ((*i)[0] > (*j)[0]) {
            pol3.push_back({ (*i)[0], (*i)[1] });
            i++;
        }
        else if ((*i)[0] < (*j)[0])
        {
            pol3.push_back({ (*j)[0],(*j)[1]});
            j++;
        }
        else
        {
            pol3.push_back({ (*i)[0],(*j)[1]+(*i)[1]});
            i++;
            j++;
        }
    }
    bool flag = 0;
    cout << pol3.size() << ' ';
    auto z = pol3.begin();
    while(z!=pol3.end())
    {
        if(flag == 1)
        {
            cout << ' ';
        }
        cout << (*z)[0] << ' '<<(*z)[1];
        if(flag == 0)
            flag = 1;
        z++;
    }
}

### 回答1: 好的,以下是关于多项式加法的解答: 多项式是一种数学表达式,其中包含了一个或多个变量的项,每个项包括了一个系数和指数。多项式的加法是将两个多项式相加,使得同一指数的项相加并合并同类项。 例如,考虑以下两个多项式: a = 3x^2 + 2x + 1 b = 5x^3 + 2x^2 - 3x + 4 它们的和为: a + b = 5x^3 + 5x^2 - x + 5 为了实现多项式加法,我们可以使用类似于整数加法的算法。首先,我们按照指数从高到低的顺序将两个多项式的项进行排列,并合并同类项。然后,将同一指数的项的系数相加,并创建一个新的多项式来表示它们的和。 以下是一个用 Python 实现多项式加法的示例代码: ```python def add_polynomials(a, b): result = {} for exponent, coefficient in a.items(): result[exponent] = coefficient + result.get(exponent, 0) for exponent, coefficient in b.items(): result[exponent] = coefficient + result.get(exponent, 0) return {k: v for k, v in sorted(result.items(), reverse=True)} ``` 在这个函数中,我们使用一个字典来表示多项式。字典的键是多项式中每个项的指数,而值是该项的系数。我们首先遍历多项式 a 的每个项,并将其系数添加到结果字典中相应指数的项中。然后,我们再遍历多项式 b 的每个项,并将其系数添加到结果字典中相应指数的项中。最后,我们将结果字典按照指数从高到低的顺序排序,并返回结果。 例如,我们可以使用以下代码来测试上面的函数: ```python a = {2: 3, 1: 2, 0: 1} b = {3: 5, 2: 2, 1: -3, 0: 4} print(add_polynomials(a, b)) # 输出:{3: 5, 2: 5, 1: -1, 0: 5} ``` 这个例子中,我们将多项式 a 和 b 传递给 `add_polynomials` 函数,并打印函数的返回值。函数返回的结果是一个字典,其中包含了相加后的多项式的各项系数。 希望这可以回答你的问题! ### 回答2: 我们考虑两个多项式P(x)和Q(x),并给予它们各自的次数a和b。那么,首先我们要确定它们的乘积,也就是P(x)乘以Q(x)。我们可以通过分配律将乘积展开,得到一个系数为c_i的新多项式R(x): P(x) * Q(x) = R(x) = c_0 + c_1x + c_2x^2 + ... + c_{a+b}x^{a+b} 其中,c_i表示x的i次项的系数。为了计算出这些系数,我们需要对所有次数小于或等于a+b的i进行求和。具体来说,我们可以使用下面这个公式: c_i = sum(j=0 to i) P(j) * Q(i-j) 也就是说,第i项的系数是将第一个多项式中次数小于或等于j的项和第二个多项式中次数等于i-j的项相乘,并且对所有j求和。我们可以使用循环来计算这些系数。 需要注意的是,由于两个非零多项式的乘积的次数至少为a+b,因此我们需要为求和循环的上界设置一个适当的值。具体来说,可以将循环的上界设置为a+b,这样就能保证所有的系数都会被计算。此外,如果某个系数为0,则可以将它省略掉,以减少计算量。 在实现时,还需要注意多项式乘法中的一些细节。例如,当某个多项式的系数为0时,我们可以假定它的所有次数都对应了一个系数为0的项。此外,我们需要考虑多项式乘法的精度,以避免出现浮点数误差。具体来说,可以使用一些特殊的技巧来避免浮点数误差,例如将系数表示为有理数,或者使用任意精度计算库。 总之,多项式乘法是非常基础的数学问题,也是很多算法和应用程序的核心部分。通过合理地选择算法和编写高效的代码,我们可以在计算多项式乘法时获得比较优秀的性能。 ### 回答3: 题意: 给定两个多项式 $A(x)$ 和 $B(x)$,请求出它们的乘积 $C(x)$ 思路: 多项式乘法非常简单,就是按照手算乘法的规则将每一项相乘然后相加。但是对于两个多项式相乘,需要循环枚举每一项相乘,最终将结果相加。如果直接按照手算乘法来做会有很多重复的计算,因此需要使用一些技巧来优化计算过程。下面给出两种常见的优化方法: 方法一:常规乘法过程 对于两个多项式 $A(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ 和 $B(x) = b_0 x^0 + b_1 x^1 + ... + b_m x^m$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x) = c_0 x^0 + c_1 x^1 + ... + c_{n+m} x^{n+m}$$ 其中 $c_k$ 是 $A(x)$ 中所有次数为 $i$ 的项和 $B(x)$ 中所有次数为 $k-i$ 的项的乘积之和,即 $$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$ 对于每一个 $k$,需要循环枚举 $i$ 的值,这样时间复杂度就是 $O(nm)$,无法通过本题。 方法二:多项式快速幂 快速幂是一种用来计算 $a^n$ 的算法,可以将计算次数从 $O(n)$ 优化到 $O(\log n)$,非常高效。对于两个多项式 $A(x)$ 和 $B(x)$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x)$$ 令 $A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}, B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}$,其中 $n$ 是 $A(x)$ 和 $B(x)$ 最高次项次数加一并且是 $2$ 的幂次方,$A_0(x)$ 和 $B_0(x)$ 是 $A(x)$ 和 $B(x)$ 中次数不大于 $\frac{n}{2}$ 的项组成的多项式,$A_1(x)$ 和 $B_1(x)$ 是 $A(x)$ 和 $B(x)$ 中次数大于 $\frac{n}{2}$ 的项组成的多项式,即 $$A(x) = A_0(x) + x^{\frac{n}{2}} A_1(x)$$ $$B(x) = B_0(x) + x^{\frac{n}{2}} B_1(x)$$ 则有 $$C(x) = A(x) \cdot B(x) = A_0(x) B_0(x) + x^n A_1(x) B_1(x) + x^{\frac{n}{2}} (A_0(x) B_1(x) + A_1(x) B_0(x))$$ 我们可以首先递归计算以下三个多项式: $$C_0(x) = A_0(x) \cdot B_0(x)$$ $$C_1(x) = A_1(x) \cdot B_1(x)$$ $$C_2(x) = (A_0(x) + A_1(x)) \cdot (B_0(x) + B_1(x))$$ 然后将它们合并成最终结果,即 $$C(x) = C_0(x) + x^n C_1(x) + x^{\frac{n}{2}} (C_2(x) - C_0(x) - C_1(x))$$ 这样可以将时间复杂度优化到 $O(n \log n)$,可以通过本题。 AC CODE:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值