markdown学习笔记——列表/区块

markdown列表

markdown支持有序列表和无序列表。
无序列表使用星号(*)、加号(+)或者是减号(-)加空格作为列表标记。
代码如下:

* 第一项
* 第二项
* 第三项
+ 第一项
+ 第二项
+ 第三项
- 第一项
- 第二项
- 第三项

结果如图:
在这里插入图片描述
有序列表使用数字并加上.号来表示。
代码如下:

1. 第一项
2. 第二项
3. 第三项

结果如图:
在这里插入图片描述

列表嵌套

只需在子列表中的选项添加4个空格即可。
代码如下:

1. 第一项
    - 第一项嵌套的第1个元素
    - 第一项嵌套的第2个元素
2. 第二项
    - 第二项嵌套的第1个元素
    - 第二项嵌套的第2个元素

结果如图:
在这里插入图片描述

markdown区块

markdown区块引用是在段落的开头使用 > 符号,然后后面紧跟一个空格。
代码如下:

> markdown  
> 区块引用  
> Python  

结果如图:
在这里插入图片描述
另外区块支持嵌套,1个 > 符号是最外层,两个 > 符号是第一层嵌套,依次类推。
代码如下:

> 最外层
>> 第一层嵌套
>>> 第二层嵌套

结果如图:
在这里插入图片描述

区块中使用列表

代码如下:

> 区块中使用列表
> 1. 第一项
>     + 第一项
>     + 第二项
>     + 第三项
> 2. 第二项

结果如图:
在这里插入图片描述

列表中使用区块

如果在列表项目内放进区块,那么就需要在 > 前添加4个空格的缩进。
代码如下:

* 第一项
    > markdown  
    > python
* 第二项

结果如图:
在这里插入图片描述

### 在 VSCode 中使用 Jupyter 进行记笔记的方法 #### 安装必要的扩展 为了在 Visual Studio Code (VSCode) 中高效地使用 Jupyter 笔记本功能,需先安装以下两个核心扩展: 1. **Jupyter 扩展**:此扩展允许用户直接在 VSCode 中打开 `.ipynb` 文件并执行代码单元格。 2. **Pylance**:这是一个由微软发布的 Python 语言支持插件,提供强大的 IntelliSense 功能以及对 Jupyter 的兼容性[^3]。 可以通过命令面板 (`Ctrl+Shift+P`) 输入 `Extensions: Install Extensions` 来查找并安装上述两项工具。 --- #### 设置本地环境 确保已正确安装 Python 和 Jupyter Notebook。如果尚未完成安装操作,则可以按照如下路径设置: - 将 Python 添加到系统的 PATH 环境变量中,例如默认安装位置可能位于 `D:\Program Files\Python\Python310\Scripts`[^2]。 - 使用 pip 工具安装 Jupyter Notebook 库: ```bash pip install jupyter ``` 完成后重启 VSCode 以便加载最新的配置更改。 --- #### 创建与编辑笔记本文件 一旦准备就绪,在左侧活动栏点击“Jupyter 笔记本”图标或者通过菜单项选择新建一个空白的 IPython 文档。此时会弹出对话框询问关联哪个解释器版本号——建议挑选匹配项目需求的具体实例作为目标解析引擎。 对于已有 `.py` 脚本转换成互动式的记录形式也很简单,只需利用顶部菜单里的选项:“Run Current File in Interactive Window”,这能快速把纯文本模式下的算法逻辑迁移到可视化的实验平台上去探索更多可能性[^1]。 --- #### 利用增强特性提升效率 借助于 Pylance 提供的功能集,开发者可以获得诸如自动导入、实时错误检测等方面的便利之处;与此同时还能享受到针对 markdown 单元格渲染优化后的美观呈现效果。这些综合起来使得整个学习研究过程变得更加顺畅自然。 以下是几个实用技巧: - **Markdown 支持**:除了常规的文字描述外,还可以嵌入 Latex 数学表达式或是 HTML 片段来丰富内容表现力。 - **调试能力集成**:无需切换界面即可启动断点追踪分析复杂程序行为轨迹。 ```python import numpy as np from matplotlib import pyplot as plt # Example of plotting sine wave using Matplotlib within a cell. x = np.linspace(-np.pi, np.pi, 100) plt.plot(x, np.sin(x)) plt.title('Sine Wave') plt.show() ``` 以上片段展示了如何在一个单独区块里实现数据可视化图表绘制任务。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值