内容来源:布博士(擎创科技资深解决方案专家)
随着信息技术的不断进步,企业IT系统变得越来越复杂,随之而来的运维压力也逐渐增大。面对海量的系统告警信息,如何快速、准确地响应和处理,成为运维工作的核心挑战之一。尤其《“十四五”数字经济发展规划》强调,要提高数字经济发展的质量和效益,增强经济抗风险能力。这一政策指导下,企业需要通过数字化手段提升运维管理水平。
告警处置不当,可能导致小问题演变成大故障,甚至影响业务的正常运行。因此,制定一套有效的告警处置规范与标准显得尤为重要。
一、告警处置流程
1.告警分类和优先级设置
-
告警级别:分为紧急(Critical)、高(High)、中(Medium)、低(Low)四个级别。
-
告警分类:包括系统资源(CPU、内存、磁盘)、网络、应用程序、服务状态等。
-
优先级设置:根据业务影响、用户影响、潜在风险等因素进行优先级排序。
2.告警通知机制
-
通知方式:电子邮件、短信、即时通讯工具(如企业微信、钉钉)、自动语音电话等。可根据不同的告警级别进行通知渠道选择。
-
通知对象:根据告警类型和级别自动通知相应的责任人和团队。
3.告警响应时间
-
SLA(服务级别协议):明确各类告警的响应时间,如紧急告警需在15分钟内响应。具体级别由业务和应用负责人共同制定。
-
值班制度:设立7×24小时的值班制度,确保任何时候都有人员响应告警。
4.告警处理步骤
-
初步分析:值班人员收到告警后,进行初步分析,确认告警的真实性和影响范围。
-
快速处理:对已知问题或有预案的告警,进行快速处理,尽量减小影响。
-
升级处理:如无法在规定时间内解决,及时升级至高级工程师或相关部门。
5.事件记录
-
记录信息:告警时间、类型、影响范围、处理过程、处理结果、负责人员等。
-
日志管理:所有告警处理过程必须记录在案,便于日后审计和分析。
6.根因分析
-
问题定位:通过日志分析、系统监控、拓扑数据等手段,找出问题根本原因。
-
经验总结:对告警事件进行总结,形成案例库,为未来类似事件提供参考。
7.事后改进
-
改善措施:制定具体的改善计划,如配置优化、代码修复、硬件更换等。
-
复盘会议:定期召开复盘会议,分析告警处置中的不足,优化流程和策略。
二、告警处置的注意事项
-
提高告警准确性: 避免误报和漏报,定期优化监控规则和阈值设置。
-
确保团队协作:加强团队间的沟通与协作,确保信息共享和任务明确。
-
保持学习和更新:定期培训和学习最新的技术和工具,提高团队整体的技术能力。
以上规范的实施,具体细节需要各司按自己的情况进行细化成不同的分册并执行。
三、告警分级定义的标准
1.紧急(Critical):对核心业务和系统产生严重影响,可能导致服务中断或数据丢失。比如:
-
数据库服务宕机或无法访问
-
核心应用服务崩溃
-
重要网络设备(如防火墙、路由器)故障
-
存储设备出现物理损坏,无法进行数据读写
-
响应要求:立即响应,通常需要在10-15分钟内采取行动。
2.高(High):对业务运行造成明显影响,但不影响核心功能的使用。比如:
-
某个节点的CPU使用率持续超过90%
-
Web服务器响应时间异常延长
-
网络带宽使用率接近饱和
-
非核心服务宕机
-
响应要求:快速响应,通常需要在30分钟至1小时内采取行动。
3.中(Medium):对部分功能或用户体验产生影响,但核心业务可正常运作。比如:
-
某台服务器内存使用率过高,但未达危险阈值
-
部分用户无法访问非关键业务功能
-
系统日志出现大量错误或警告信息
-
响应要求:正常响应,通常需要在2-4小时内进行处理。
4.低(Low):对系统和业务影响较小,通常为信息提示或优化建议。比如:
-
硬盘剩余空间低于20%
-
日志文件大小接近设定阈值
-
服务已恢复但建议检查可能存在的隐患
-
响应要求:计划响应,通常在24小时内处理或在下个维护窗口进行处理。
四、告警优先级的定义标准
1.业务影响
-
高优先级:对业务运营和收入有直接影响。
-
低优先级:对业务运营影响较小,或可在短时间内自动恢复。
2.用户影响
-
高优先级:影响到大量用户或关键用户的体验。
-
低优先级:仅影响到少量用户或非关键用户。
3.系统健康
-
高优先级:系统关键资源(如CPU、内存、带宽)使用超过安全阈值。
-
低优先级:系统资源使用接近阈值,但无明显性能下降。
4.安全风险
-
高优先级:存在潜在的安全威胁,如入侵、数据泄露。
-
低优先级:安全日志中的可疑活动,但无实际影响。
擎创科技,Gartner连续推荐的AIOps领域标杆供应商。公司专注于通过提升企业客户对运维数据的洞见能力,为运维降本增效,充分体现科技运维对业务运营的影响力。
行业龙头客户的共同选择
了解更多运维干货与行业前沿动态
可以右上角一键关注
我们是深耕智能运维领域近十年的
连续多年获Gartner推荐的AIOps标杆供应商
下期我们不见不散~