欧拉道路和欧拉回路

欧拉通路: 通过图中每条边且只通过一次,并且经过每一顶点的

欧拉回路: 通过图中每条边且只通过一次,并且经过每一顶点的

有向图的基图:忽略有向图所有边的方向,得到的无向图称为该有向图的基图。 

无向图

  设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路

 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路是欧拉回路

  具有欧拉回路的无向图G成为欧拉图

有向图

(1)设D是有向图,D的基图连通,则称经过D的每条边一次并且仅有一次的有向路径为 有向欧拉通路

(2)如果有向欧拉通路是有向回路,则称此有向回路为  有向欧拉回路

(3)具有有向欧拉回路的图D称为有向欧拉图

定理

 无向图G存在欧拉通路的充要条件是:G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。

推论

(1) 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点;

(2)当G是无奇度结点的连通图时,G必有欧拉回路

(3)G为欧拉图(存在欧拉回路)的充分必要条件是  G为无奇度结点的连通图

 

(有向图) 定理

有向图D存在欧拉通路的充要条件是:D为有向图,D的基图连通,并且所有顶点的出度与入度相等;或者  除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1.

推论

(1)当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。

(2)当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。

(3)有向图D为有向欧拉图的充要条件是  D的基图为连通图,并且所有顶点的出、入度都相等。

 

 

欧拉回路的求解

两种方法:(1)DFS搜索  (Fleury)佛罗莱算法

(1)DFS搜索 思想求解欧拉回路的思路为:利用欧拉定理判断出一个图存在欧拉通路或欧拉回路后,选择一个正确的起始顶点,用DFS算法遍历所有的边(每条边只遍历一次),遇到走不通就回退。在搜索前进方向上将遍历过的边按顺序记录下来。这组边的排列就组成了一条欧拉通路或回路。

(2) (Fleury)佛罗莱算法

设G为一个无向欧拉图,求G中一条欧拉回路的算法如下:

(1) 任取G中一顶点v0,令P0=v0;

(2)假设沿Pi=v0e1v1e2v2......eivi走到顶点vi,按下面方法从E(G)-{e1,e2,...,ei}中选ei+1。

        ei+1与vi相关联

        除非无别的边可供选择,否则ei+1不应该是Gi=G-{e1,e2,...,ei}中的桥。

(3)当(2)不能再进行时算法停止。

        可以证明的是,当算法停止时,所得到的简单回路Pm=v0e1v1e2v2......emvm,(vm=v0)为G中一条欧拉回路。

 

备注知识:

  设无向图G(V,E)为连通图,若边集E1属于E,在图G中删除E1中所有的边后得到的子图是不连通的,而删除了E1的任一真子集后得到的子图是连通图,则称E1是G的一个割边集。若一条边构成一个割边集,则称该边为割边,或

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
//欧拉路径的输出(此图为无向图)
#include<iostream>
using  namespace  std;
#define M 200
struct  stack
{
     int  top,node[M];
}s;              //顶点的栈结构
int  Edge[M][M];  //邻接矩阵
int  n;           //顶点个数
 
void  dfs( int  x)    //这里的深度优先跟标准版有所区别,即不需要回溯
{
     s.top++;
     s.node[s.top]=x;    //将即将要扩展的结点压入栈中
     for ( int  i=0;i<n;i++)
     {
         if (Edge[i][x])  //如果该节点还存在边
         {
             Edge[i][x]=0; 
             Edge[x][i]=0;   //删除该边,然后搜索另一结点
             dfs(i);
             break ;
         }
     }
}
 
void  Fleury( int  x)     //对头节点使用Fleury算法 查找欧拉路径
{
     s.top=0;
     s.node[s.top]=x;
     while (s.top>=0)
     {
         int  flag=0;   //记录当前结点是否有边可以扩展
         for ( int  i=0;i<n;i++)
         {
             if (Edge[i][s.top])
             {
                 flag=1;
                 break ;
             }
         }
         if (!flag)
         {
             cout<<s.node[s.top]+1<< " " //记录时是从0--n-1,所以应该加1
             s.top--;                     //结点输出了,此结点出栈
         }
         else
         {
             s.top--;               //因为dfs处理时,需要先进栈,所以这里要先出栈,然后再进栈
             dfs(s.node[s.top+1]);  //处理那个结点
         }
     }
     cout<<endl;
}
 
int  main()
{
     int  m,s,t;             //边数,读入的边的起点和终点
     int  degree,num,start;  //每个顶点的度、基度顶点个数、欧拉回路的起点
     cin>>n>>m;             //n---顶点数  m---边数
     memset (Edge,0, sizeof (Edge));
     for ( int  i=0;i<n;i++)
     {
         cin>>s>>t;
         Edge[s-1][t-1]=1;
         Edge[t-1][s-1]=1;
     }
     num=0;
     start=0;    //如果存在奇度顶点,则从奇度顶点出发,否则从顶点0出发
     for ( int  i=0;i<n;i++)
     {
         degree=0;
         for ( int  j=0;j<n;j++)
             degree+=Edge[i][j];
         if (degree%2)
         {
             num++;
             start=i;
         }
     }
     if (num==0||num==2) Fleury(start);
     else  cout<< "No Euler path" <<endl;
     return  0;
}
练习:

       单词(https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105&page=show_problem&problem=1070)

具体大意:

     输入n(n<=100000)个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同(例如 acm、malfon、mouse)。每个单词最多包含1000个小写字母,输入中可以有重复单词。

分析:

    把字母看做节点,单词看成有向边,则问题有解,当且仅当图中有欧拉路径。前面讲过,有向图存在欧拉道路的条件有两个:底图(忽略边方向后得到的无向图)连通,且度数满足上面讨论过的条件。判断连通的方法有两种,一是之前介绍过的DFS,二是并查集,可以按照自己喜好选用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值