二分
•主要用于在一个单调的函数中查询某值
• 连续函数的情况:
• 若当前查找的区间是 [l, r] ,查询的值是 y ,函数单增
• 设 mid = (l + r) / 2 若 f(mid) < y 则 l = mid, 否则 r = mid
• 直至 r - l < eps
离散函数的情况:
• 当前查找的区间是 [l, r] ,查询的值是 y ,函数单增
• 设 mid = (l + r) / 2 若 f(mid) = y 则 return mid
• 若 f(mid) < y 则 l = mid + 1, 否则 r = mid - 1
二分答案的主要思想
• 就是在答案的可能范围(区间)内二分枚举
• 并检查所穷举的答案是否符合题意。
• 可以将最优性问题(直接求解相对较难)
• 转化为可行性问题(答案是否符合题意相对容易)
二分答案的适用范围(条件)
• 二分答案当且仅当答案的范围已知且具有单调性的时候才可以使用。
• 一般也是求最优值问题• 更多、更明显的标志是:
• “最大值最小化” 或者 “最小值最大化”
二分答案的框架• 假设答案是单调递增的,要求的是“最小值”
• l = 答案下限,r = 答案上限
• while (l <= r)
• {
• mid = (l + r) >> 1;
• if check(mid) ans = mid, r = mid - 1; else l = mid + 1;
• }
• return ans;
二分答案的难点(关键)
• 如何检验当前的答案是否符合题目的要求(限制条件)?
• 常见的方法:穷举、贪心、搜索、动态规划、图论、数据结构等
• 可以看到,二分答案问题很好地结合了其他算法知识,非常受命题者欢迎
• NOIP 2010 以来经常出现,例如 NOIP 2015 D1T2 跳⽯头
例 收入计划(http://blog.csdn.net/qq_37654726/article/details/78916798)
毕竟djh_oier是一个蒟蒻,如有错误之处,敬请大牛指正!