自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(147)
  • 资源 (22)
  • 问答 (2)
  • 收藏
  • 关注

原创 python常用处理代码

前言最近做深度学习项目,很多情况下都需要自己处理数据集,整理文件,记录文件关系,修改文件名字等等,做个记录。

2020-07-22 16:58:14 188

原创 PaddleOCR —— 动态图训练

官方repo:github地址可以star代码关注更新情况,最近在迁移代码到动态图,可能更新较频繁~下载代码https://github.com/PaddlePaddle/PaddleOCR.git切换分支git checkout dygraph创建训练的配置文件Global: use_gpu: true epoch_num: 500 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output

2020-11-25 14:13:34 28

原创 python代码实现Mac,windows,linux删除文件到垃圾桶(不使用os.remove())

代码调用move2Trash(deletePath)即可例如:move2Trash("./111.txt")linux系统需要安装软件:sudo apt-get install trash-cli#!/usr/bin/env pythonimport osimport platformdef move2Trash(deletePath): # windows if (platform.system() == 'Windows'): from win32com

2020-11-20 15:31:24 37 1

原创 PaddleOCR——训练总结

记录下训练碰到的问题自己合成的数据在MLT验证精度非常低原因:合成数据与真实数据差别较大,表现结果是在合成数据上拟合结果非常好,在真实数据上效果差,存在向合成数据过拟合的问题,解决办法增加真实数据(但这个不好找)、对真实数据进行数据增广(应该可以吧)、拿合成数据训练的best模型在真实数据上finetune(在测试)。合成数据的best模型作为预训练模型在真是数据上finetune时最开始acc=0.0原因:我使用的预训练模型是在合成数据上识别日语并且验证集准确度最高有83%左右,并且用这个模型在真

2020-11-18 18:59:56 84

原创 PaddleOCR —— 导出训练模型并测试(俄语)

使用paddleocr训练好代码后可以拿到三个文件:路径在PaddleOCR/output/rec_russia下,其中这个rec_russia是我自己训练的日语的识别的存放路径,可以在对应的训练yaml里面修改。第一步:转换模型成inference模型python3 tools/export_model.py -c ./configs/rec/multi_languages/rec_russia_lite_train.yml -o Global.checkpoints=./output/rec_r

2020-11-16 16:05:34 60

原创 linux移动文件过多报错-bash: /bin/mv: Argument list too long

解决办法:find 原目录/ -name "*.png" -exec mv {} 目标目录/ \;注意结尾分号不可漏

2020-11-13 10:27:22 23

原创 PaddleOCR —— 训练数据准备

数据生成数据生成代码地址:https://github.com/oh-my-ocr/text_renderer垂直数据生成地址:https://github.com/zcswdt/Color_OCR_image_generator/blob/c2a7138be2107b3b3736b76badf5c012c6befe0c/OCR_image_generator.py#L340将竖直生成加入textrender代码地址:https://github.com/xmy0916/textrender

2020-11-04 11:38:11 126

原创 PaddleOCR —— 训练数据

创建训练数据cd ./train_datawget http://10.12.121.133:8901/data/ic15_data.tartar -xvf ic15_data.tar下载预训练模型wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tarcd pretrain_modelstar -xf rec_mv3_none_bilstm_ctc.tar &&amp

2020-10-29 17:43:32 219

原创 docker编译paddlepaddle记录

环境CUDA 10.0cudann 7paddlepaddle-realse-1.8.0步骤下载源码git clone https://github.com/PaddlePaddle/Paddle.git创建docker容器cd Paddlenvidia-docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda1

2020-10-29 12:51:23 28

原创 PaddleOCR —— 本地安装

简介记录下本地安装PaddleOCR的过程,repo地址:PaddleOCR的github地址。开源的文字识别库还是很香的,star起来。第一步:关注Repo,更新了不迷路点上star和fork,感觉代码全是我写的哈哈哈哈第二步:下载代码选择git clone下载或者直接点击按钮下载都行:第三步:本地创建工程并用pycharm打开我这里创建了一个叫paddleOcr的文件夹放ocr的代码:第四步:安装依赖打开pycharm底下的终端输入下面命令安装,就会自动安装上所有需要的依赖:c

2020-10-23 21:05:59 423 2

原创 百度视觉技术部实习生面经

前言昨天到百度面试,第一次实习面试来到百度科技园有点点震撼,形形色色的码农,在一楼还看到了百度自动驾驶组在测试车载显示屏,什么时候才能变得这么强…说实话公司的氛围是真的好,哎,收了我吧。emmm面试这个组的话是找飞桨内部运营帮忙内推的,问了下面试的姐姐目前只有一个实习生。所以感觉还是略缺人?可能这个时间段吧,前不前后不后的,加上疫情。面试内容一面是一个刚毕业的研究生姐姐,打电话下来接我进公司的时候声音特特特特别温柔,所以稍微感觉轻松了一点。一面内容:自我介绍手写代码:字符串中查找最长无重复子串

2020-10-21 16:23:44 920 13

原创 车道线拟合代码

代码import cv2import numpy as npdef find_line_fit(img, name = "default" ,nwindows=9, margin=100, minpix=50 , minLane = 50): ''' Args: img: 传入的灰度图像 name: 图像的名字,当处理视屏流的时候,有些图像没法拟合可以用异常来报错提示那一帧出了问题 nwindows: 将图像纵向切割的窗口个数

2020-10-04 23:00:52 131

原创 windows卸载cuda9.0安装cuda10.0

前言使用paddle框架,更新了ppyolo,升级了paddle版本之前装的cuda9.0不适配了,卸载了安装cuda10.0,记录一下卸载进入卸载的面板:参考了下同学没装cuda的电脑:ok,删除多余的项目即可。其实还可以看看安装时间,就像我的cuda9.0是4.12日安装的,安装日期是那天的就没跑了。卸载完成:安装cuda10.0下载cuda toolkit:传送门如图勾选:双击安装一直默认即可。验证安装:cmd命令后输入nvcc -V下载cudnn链接:https

2020-09-14 17:52:59 313

原创 百度飞桨强化学习(3)

神经网络方法求解RL为什么引入神经网络前面学习了Q表格求解RL,但是Q表格毕竟是动作种类和状态种类数量较少的情况,像如果用强化学习来训练小人走路那么关节动作的角度是无穷个状态的情况,这个时候就不能用Q表格来解决问题,需要使用值函数来做逼近处理。Q表格缺点值函数近似的优点表格可能占用极大的内存仅需存储有限的参数当表格较大时,查表效率低状态泛化,相似的状态可以输出一样DQN:使用神经网络求解RL问题的算法本质:Q-learningDQN算法两大创新点:经验

2020-09-11 23:38:01 86

原创 fcntl.py

F_GETFD = 0F_SETFD = 0FD_CLOEXEC = 0LOCK_EX = 1LOCK_UN = 0def fcntl(fd, op, arg=0): return 0 def ioctl(fd, op, arg=0, mutable_flag=True): if mutable_flag: return 0 else: return "" def flock(fd, op): retur

2020-08-31 23:50:08 101

原创 python使用numpy库替换两个np数组中已知索引的值

使用场景已知数组1:arr1= [1,2,3,4,5,6,7,8,9]已知数组2:arr2= [0,0,0,0,0,0,1,1,1]需要将数组2中值为0的数替换数组1中对应位置的数。结果:result = [0,0,0,0,0,0,7,8,9]实现代码arr1[np.where(arr2 == 0)] = 0np.where(arr2 == 0)返回arr2中值为0的索引...

2020-08-31 09:59:24 165

原创 github提交超过100M不可再次上传解决方案

显示文件git ls-files找到要删除的大于100M的文件路径删除大于100M的文件git rm --cache 文件名(从上个命令里复制过来)提交操作git commit --amend -CHEAD提交远程主机git push origin master

2020-08-30 23:15:33 58

原创 百度飞桨强化学习(2)

表格法求解强化学习强化学习MDP四元组<S,A,P,R>s:state 状态a:action 动作r:reward 奖励p:probability 状态转移概率MDP全称马尔可夫决策过程,即系统的下个状态只与当前状态信息有关,而与更早之前的状态无关,这叫做马尔可夫性质。如何描述环境如果P函数和R函数都确定了,那么可以说该环境是已知的了,就可以使用动态规划的方法去计算概率最大的最优策略是什么。当P函数与R函数都已知的时候,称为

2020-08-27 15:01:59 106

原创 使用paddle框架无人驾驶 —— 卷积神经网络计算方向盘打角

前言之前一直在弄车道线的检测和识别,效果都不佳,要么车道线分割太慢了,要么容易出现丢线的情况处理的不是很好,所以索性直接用卷积神经网络做一个线性拟合。效果 用魔法玩欧卡2,使用国产深度学习框架paddlepaddle部署无人驾驶 传送门:视屏链接数据采集读取欧卡2的数据做训练集属实花了我点功夫,步骤如下:首先安装虚拟摇杆vJoySetup.exe在欧卡里设置操纵模式为键盘加

2020-08-17 00:19:47 102

原创 百度飞桨强化学习(1)

基础高等数学线性代数(向量空间的变换思想)概率与数理统计(期望,方差)Python:numpy神经网络强化学习两种学习方法基于价值基于策略乌龟环境首先本地下载PARL:git clone git@github.com:PaddlePaddle/PARL.git用pycharm打开PARL的工程进到第一节课的文件下:cd D:\py_code\PARL\examples\tutorials\lesson1在pycharm的终端输入python进入交互式编程:

2020-08-09 13:38:39 111

原创 使用paddle框架无人驾驶 —— 根据车道线处理方向盘角度

前言上一节实现了车道线的识别,以及设计了算法获取车道线位置,这里参考:项目地址的算法思想,做了一些改动设计的车道线拟合。算法思想首先通过上一节的实现我们得到了下图样式的车道线:因此我们编写的车道线拟合函数的输入自然就是这张图。首先记录下不考虑连续帧的情况的算法思想:首先对图像做对半的分割理想的车道线是左线和右线,然后在我们图像的左右两部分,分割代码:midpoint = np.int(img.shape[1]/2)滑动窗口从下网上检索车道线原理就是下图:我这里将整张图竖直上分成9

2020-08-08 17:29:29 167

原创 北邮机器人队2020预备队培训(七) ——仿真文件介绍

前言本节介绍文件结构以及介绍一下launch文件的编写.文件结构racecar_control文件这个文件夹主要是配置小车的运动,我们的车模是阿克曼车模,前轮相当于舵机转向后轮驱动,这个文件夹就是配置了这两项.config文件夹这个文件夹下就一个racecar_control.yaml文件,也就是运动关节的配置文件:这里面定义了运动控制器对应的模型的关节是哪个,并且定义了每个关节的类型以及PID参数,这个参数基本不需要调整.launch文件夹这下面放置了控制关节运动相关的启动文件:

2020-08-03 23:24:48 479 1

原创 北邮机器人队2020预备队培训(六) —— 传感器数据读取与处理

前言这一节介绍如何读取两台机器人的传感器数据.fetch机器人的摄像头数据读取代码:#!/usr/bin/env python# BEGIN ALL# coding=utf-8import rospy, cv2, numpyfrom sensor_msgs.msg import Imageimport sysimport cv_bridgeclass Catch: def __init__(self): self.bridge = cv_bridge.CvBridge()

2020-08-02 21:46:05 604

原创 使用paddle框架无人驾驶 —— 语义分割模型检测车道线

前言准备在欧卡2实现无人驾驶,第一步使用paddlepaddle框架的paddleseg模块对车道线语义分割。语义分割数据集本文采用的数据集是tusimple数据集,图森车道线检测数据集。下载地址:传送门对数据集做了一些简单的处理,记录原始图像和带标签图像的文件路径关系。数据集样例:paddleseg这是百度深度学习框架推出的语义分割模块,集成了很多大佬写好的模型,只需要直接配置就可以使用这些模块了,对于新手上手比较友好。paddleseg项目地址:国产深度学习框架,点个star支

2020-08-01 19:18:21 436

原创 北邮机器人队2020预备队培训(五) —— 部署比赛

前言上几节了解了ROS的三种消息机制,大家对ROS也有了一定的认识,今天再介绍下ROS常用的工具.rostopic传送门rosservice传送门rosnode传送门两款仿真软件介绍Gazebo集成物理引擎的一款仿真软件,主要在场景中仿真机器人的运动等,可以模拟真实场景.通常与ROS结合使用,主流支持机器人的模型文件格式为URDF格式,Xacro格式.RVIZ基于qt设计的数据分析,数据可视化软件,主要用于传感器数据可视化,传感器数据处理,算法验证等.通常与ROS和gazebo联合使

2020-07-31 22:54:00 1336

原创 北邮机器人队2020预备队培训(四) —— ROS基础二

前言上一节讲了ros机制中的话题机制,今天教程讲剩余的两种机制,动作和服务.ROS机制之服务服务适用于只需要偶尔去做并且会在有限的时间内完成的事情.举个例子,我们使用手机的时候想查询自己的手机话费余额,那我们可以使用10086的短信服务,只需要编辑短信发送给10086请求查询余额的服务我们就能收到查询结果.测试ROS服务这里使用ros入门例子测试服务机制.首先启动ros:roscore打开小乌龟:rosrun turtlesim turtlesim_node启动键盘控制:ro

2020-07-30 22:57:33 561

原创 北邮机器人队2020预备队培训(三) —— ROS基础

前言本次课程介绍ROS基础,今年的预备队培训也以ROS为主,最后在比赛中结合控制算法完成任务。ROS是什么ROS又叫机器人操作系统,ROS提供了一种发布-订阅式的通信框架用以简单、快速地构建分布式计算系。ROS的三种机制 —— 话题话题是ROS中最最常用的机制,话题也是ROS设计的高明之处,之前说了ROS是发布订阅的通信框架,这种框架搭建用的就是话题机制。话题机制就是发布者和接收者的话题的名字相同就可以考虑连接,能否连接成功还需要参照发布者和接收者话题的类型是否一致,如果发布者和接收者都

2020-07-29 23:28:03 1538

原创 北邮机器人队2020预备队培训(二) —— python入门

前言Robocon正式比赛单片机程序主要使用的是c语言,但是考虑到线上培训以及ROS使用c++编程的难度,本次培训主要还是使用Python语言,人生苦短,我用Python。Linux下如何编译pythonlinux系统一般都会自带python环境,何况安装了ROS也会自动安装python2.7。一、进入交互式编程方式:pythonprint("hello world")二、编译本地python文件gedit hello.pyhello.py内容如下:#!/usr/bin/python

2020-07-28 13:53:57 2688

原创 北邮机器人队2020预备队培训(一) —— 培训介绍以及基础知识

前言今年由于疫情的原因,机器人队的暑假培训改为线上直播课培训的方式,预计培训时间在两周左右,电控组培训时间从7.28日开始(包括7.28日)每天早上9点到11点在b站上直播的方式进行,机械组培训具体以及时间安排由机械的学长学姐安排。赛事介绍 2019 全国大学生机器人赛Robocon山东卫视纪录片 ...

2020-07-27 14:00:16 2501

原创 paddleseg学习笔记

前言准备paddleseg做车道线检测,学习一下。paddleseg主流模型U-NET :轻量级模型参数少计算快DeepLabv3+:支持多种Backboon特征提取ICNet:实时语义分割适用高兴能预测场景轻量级移动端主干网络:MobileNetv2 0.25x/0.5x/1.0x/1.5x/2.0x2.0性能最好,精度最高服务端主干网络:Xception41/Xception65/Xception71网络稍大,但是精度高分割分割的定义图像分割通

2020-07-24 16:48:10 262

原创 python版opencv录屏并保存使用滚动条修改录制大小保存录制配置

前言最近在弄无人驾驶的项目,真实开车还是太麻烦了,打算在游戏里实现仿真驾驶,一般的游戏都没有视觉的接口所以选择录屏来解决这个问题。完整代码from PIL import ImageGrabimport threadingimport numpy as npimport cv2import timeimport osclass myRecord: def __init__(self,width,height): if not os.path.exists("conf

2020-07-11 18:24:10 222

转载 智能车仿真 —— 2020室外光电组仿真指导(二)

前言上一节教程地址:室外光电仿真教程一参考教程地址:https://www.guyuehome.com/6463参考项目地址:点个star呗,都是免费教程版权原因,本文图片没有转载,建议点击下方原文链接 ↓↓↓原文地址:传送门关于运动控制器官方车模关节名字不同,你其实只需要把我的racecar包里面的racecar_control文件夹拷到你新建的工程下即可,然后修改一下画框内容适配官方车模:gedit ~/smartcar_ws/src/racecar_control/config/ra

2020-07-09 21:50:51 1291 3

转载 智能车仿真 —— 2020室外光电组仿真指导(一)

前言今天推出了官方的仿真文件,我也参与了部分仿真模型的设计,提供一个简单的参考思路。模型下载地址https://pan.baidu.com/s/1TFBTbCeyQMuKnxemCbyNSw 提取码: crm5安装依赖工具sudo apt-get install ros-kinetic-controller-managersudo apt-get install ros-kinetic-gazebo-ros-controlsudo apt-get install ros-kinetic-eff

2020-07-05 18:13:27 8821 35

原创 西瓜书学习笔记(3)—— 线性模型

前言第二章有点点恶心… …先跳过了,看了网上评价第二章建议回过头来看,所以为了不打击积极性。3.1 基本形式线性模型的基本形式:f(x) = w1x1 + w2x2 + w3x3 + … + wnxn + b向量形式:f(x) = wTx + b...

2020-06-26 17:05:24 135

原创 西瓜书学习笔记(2)——模型评估与选择

2.1 经验误差与过拟合

2020-06-23 18:10:58 155

原创 西瓜书学习笔记(1)—— 绪论

前言上手学习机器学习理论吧,最近做深度学习的一些项目感觉很吃力,不是很懂调参数的原理看来实战的学习还是会有很多一知半解所以在网上看了些推荐的学习路线决定从机器学习开始,西瓜书又是入门经典所以开始啃理论吧,学习之前有一些顾虑,高中数学基础虽然是非常的扎实但是大学几门数学课都没好好的学习,现在更是看到奇奇怪怪的数学公式都有点害怕。但是吧现在全民学习这个,不做点东西以后研究生毕业都很困难。本系列博客争取结合github的南瓜书公式推导以及西瓜书的理论来记录学习笔记。发csdn希望自己能坚持下来看完这本书,就像当

2020-06-21 14:50:56 189

转载 基于paddledetection在ROS中搭建红绿灯检测控制车模运动(3)—— 使用训练结果在ros中仿真红绿灯控制小车运动

前言第一节:基于paddledetection在ROS中搭建红绿灯检测控制车模运动(1)—— 环境搭建准备以及软件安装第二节:基于paddledetection在ROS中搭建红绿灯检测控制车模运动(2)—— 数据集制作以及训练本地部署paddledetection本文假设你已经完成了前两节的操作,在本地创建了proj6_lightContrl工程文件夹。在aistudio平台上完成了模型的训练,训练完成后在下面路径下会有训练好的模型文件:home/aistudio/PaddleDetectio

2020-06-20 17:57:56 318

转载 基于paddledetection在ROS中搭建红绿灯检测控制车模运动(1)—— 环境搭建准备以及软件安装
原力计划

前言本来想直接用百度智能车比赛的数据集训练,但是发现在ROS中搭建红绿灯模型和提供的数据集在颜色亮度外形上都有点差别… …无奈从创建数据集开始。linux下数据集标注工具安装教程git clone https://github.com/Ruolingdeng/labelImg.gitcd labelImgsudo apt-get install pyqt4-dev-toolssudo pip install lxmlmake qt4py2 python labelImg.pywindo

2020-06-20 17:57:09 559

转载 基于paddledetection在ROS中搭建红绿灯检测控制车模运动(2)—— 数据集制作以及训练
原力计划

前言上一节地址:基于paddledetection在ROS中搭建红绿灯检测控制车模运动(1)—— 环境搭建准备以及软件安装数据准备打开仿真环境:roslaunch racecar_gazebo racecar_normal_light_runway.launch在本地pycharm中新建一个工程文件:proj6_lightContrl/src在src下创建脚本读取ros中摄像头数据并按键截图保存本地,prtSc.py文件如下:import rospy,cv2from sensor_msg

2020-06-20 17:56:28 263

原创 paddle百度构架师手把手教深度学习的心得

前言首先非常感谢百度的架构师百忙抽空直播教学,给我们讲百度内部的小道消息,讲产品的发展,介绍产品的应用,讲解深度学习原理等。老师和蔼可亲,班主任温柔可爱,讨论群活跃积极又有很多大佬提供答疑解惑。百度真的是花了心血为国家培养人工智能的人才,希望百度越办越好也会一直支持百度的产品。哈哈哈还感谢百度送的小度在家,没想到第一次作业就获得了一等奖,后续忙完期末会好好完善项目的~学习心得这次主要学会了以下内容:使用预训练模型训练自己的任务使用paddledetection搭建yolov3,ssd完成目标检测

2020-06-14 23:05:07 558

Vision in bad weather.pdf|Vision in bad weather.pdf

S. K. Nayar, S. G. Narasimhan, Vision in bad weather, ICCV’99

2020-09-17

欧卡2采集的图像与方向盘角度数据集

欧卡2采集的图像与方向盘角度数据集,可以用来在欧卡2中训练无人驾驶。

2020-08-17

paddledetection训练的红绿灯检测模型的最好模型参数文件

使用教程:https://www.guyuehome.com/8604,该教程中output文件夹中的模型文件,因为单个文件上传github有大小限制所以拿出来单独上传,mAP = 90.89662

2020-06-16

中国传媒大学2020年研究生录取情况

文档含有2020中传各个专业录取情况,解析官网的csv表格得到的,具体分析的原理参考博客代码,内置各个专业数据处理的散点图和均值极值中位数分析图,供大家参考。参考博客:https://blog.csdn.net/qq_37668436/article/details/106463994

2020-06-01

paddle.zip

基于百度飞浆的车牌号识别,内含识别代码,训练代码,识别数据,训练数据,识别结果93%准确率的模型等

2020-05-26

paddle.zip

基于百度飞浆的手势识别,内含训练的模型文件,使用模型识别手势的代码,使用数据训练的代码,训练的数据等

2020-05-26

xpath谷歌浏览器扩展程序

谷歌浏览器xpath插件,可以在浏览器直接查看xpath是否合理并且查看解析出的xpath内容是否是我们想要的,非常强大,爬虫的朋友!

2020-05-04

mnist手写数字图片集

minist手写数字图片集,用于tensorflow的手写数字是被训练的数据,内含1.5M图片一张。

2020-04-07

my_ground_plane.tar.gz

北邮智能车仿真地板模型,导入到你的.gazebo/models中去。

2020-03-16

smartcar_description.tar.gz

智能车仿真模型描述文件,导入你的工作区间下的src下面即可。

2020-03-16

ARCGIS安装教程以及安装包地址.txt

ARCGIS安装教程以及安装包地址,含有详细的安装教程以及汉化过程,美赛专用。祝大家2020美赛顺利,加油加油。 ARCGIS是地理信息管理系统。。。。

2020-02-14

turtlebot3.tar.gz

文档包含turtlebot3的所有安装文件以及仿真,还有自己写的一些控制脚本,使用详情可以参考我的博客:https://blog.csdn.net/qq_37668436/article/details/104221075

2020-02-09

美赛历年题目及论文.rar

最近几年美赛数学建模的例题以及国奖论文,可以为2020年美赛数学建模作为参考。祝大家美赛建模顺利!!!

2020-01-10

StudentSystem.rar

qt写的学生信息录入系统,有ui界面显示学生信息,支持学生信息的插入查找删除学号排序等。用链表实现信息的存储,简单的demo

2019-12-02

serial_code.rar

北京邮电大学测控技术与仪器专业测控课程设计AD采样上位机,编译器版本qt5,qtcreator4.2.0,部分资源写的是本机绝对路径需要修改。祝大家小学期快乐~

2019-12-02

msp432.rar

msp432代码模板,非常好用,2019电设专用,祝大家比赛顺利!

2019-08-01

oled示例代码.rar

stm32使用cubemx配置oled,简单的一个demo,可以使用cubemx再次生成

2019-06-15

测控课程设计AD采样上位机

c测控课程设计小学期设计的上位机,vb实现,读取mp42ee输入的波形

2019-03-30

qt写的串口收发的代码下载可用,版本是qt5

用qt5写的串口收发的代码,下载即可使用,注释的很详细,注释里写好了移植说明,新手参考着可以十分钟内写好。非常简单,就写了发送以及接收的代码,适合自己二次开发用,需要改的地方在代码里都用感叹号标注了。

2018-08-23

冰点文档下载器,支持下载网页百度文档

可以在线下载百度文档的文件不需要积分,需要的自行下载

2018-08-05

iar注册机,可用于破解iar

iar破解文件,亲测有效破解各种版本iar。需要的自行下载

2018-08-05

安卓studio写的指南针

这是自己简化的一个demo ,可以使用。很简单的一个指南针

2018-08-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除