1079. 延迟的回文数 (20)
给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0。N 被称为一个回文数,当且仅当对所有 i 有 ai = ak-i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number)
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中A是原始的数字,B是A的逆转数,C是它们的和。A从输入的整数开始。重复操作直到C在10步以内变成回文数,这时在一行中输出“C is a palindromic number.”;或者如果10步都没能得到回文数,最后就在一行中输出“Not found in 10 iterations.”。
输入样例 1:97152输出样例 1:
97152 + 25179 = 122331 122331 + 133221 = 255552 255552 is a palindromic number.输入样例 2:
196输出样例 2:
196 + 691 = 887 887 + 788 = 1675 1675 + 5761 = 7436 7436 + 6347 = 13783 13783 + 38731 = 52514 52514 + 41525 = 94039 94039 + 93049 = 187088 187088 + 880781 = 1067869 1067869 + 9687601 = 10755470 10755470 + 07455701 = 18211171 Not found in 10 iterations.
#include<stdio.h>
#include<iostream>
using namespace std;
string rever(string str){
int l=str.length();
string r=str;
for(int i=0;i<l;i++){
r[i]=str[l-i-1];
}
return r;
}
bool huiwen(string str){
int l=str.length();
string r=str;
r=rever(str);
for(int i=0;i<l;i++){
if(r[i]!=str[i]){return false;}
}
return true;
}
int main(){
string str1,str2;
cin>>str1;
//str2=rever(str1);
string str=str1;
int t=0;
while(!huiwen(str)&&t<10){
str1=str;
str2=rever(str1);
int l=str1.length();
int jin=0;
for(int i=0;i<l;i++){
str[l-i-1]=str1[l-i-1]-'0'+str2[l-i-1]+jin;
// printf("%c*\n",str[l-i-1]);
if(str[l-i-1]>'9'){
jin=1;
str[l-i-1]=str[l-i-1]-10;
}else{jin=0;}
// printf("%c*\n",str[l-i-1]);
if(jin==1&&i==l-1){
str="1"+str;
}
}
cout<<str1<<" + "<<str2<<" = "<<str<<endl;
t++;
}
if(t<10){
cout<<str<<" is a palindromic number.";
}else{
cout<<"Not found in 10 iterations.";
}
}