hugging face 预训练模型缓存目录修改

修改hugging face cache目录

hugging face预训练模型都特别大,系统tmp空间很可能不够

这时候需要修改cache到自定义的还有空间的目录。

官网上这么解释的,我不再作过多解释:
在这里插入图片描述
把以下的代码在终端运行,或者加入bashrc中

# /my_dir/tmp是我设置的新的缓存目录,你需要修改成你自己的目录
export HF_HOME=/my_dir/tmp
export XDG_CACHE_HOME=/my_dir/tmp
export TRANSFORMERS_CACHE=/my_dir/tmp

参考文献

[1] huggingface官网

### 查看和删除Hugging Face下载的模型 #### 查看已下载的模型 为了查看通过Transformers库自动缓存到本地文件系统的预训练模型,可以访问默认存储路径。对于大多数用户,默认位置如下: - **Linux/macOS**: `~/.cache/huggingface/transformers`[^1] - **Windows**: `%APPDATA%\\huggingface\\transformers` 另一种方法是利用Python脚本动态获取当前配置下的缓存目录: ```python from transformers import cached_files print(cached_files()) ``` 这段代码会打印出所有已经被缓存资源的信息列表。 #### 删除不再需要的模型 如果想要清理这些已经下载但是不再使用的模型文件,可以直接操作上述提到的实际物理路径来手动移除对应的文件夹;也可以编写简单的Python程序实现自动化处理过程: ```python import shutil from pathlib import Path from transformers.utils.hub import get_cache_dir # 获取缓存目录 cache_directory = Path(get_cache_dir()) for model_name in ['bert-base-uncased', 'distilbert-base-cased']: target_path = cache_directory / model_name try: if target_path.exists(): shutil.rmtree(target_path) print(f"Successfully deleted {model_name}") else: print(f"{target_path} does not exist.") except Exception as e: print(e) ``` 此段代码遍历指定名称的模型并尝试将其从磁盘上彻底清除。请注意,在执行任何涉及数据销毁的操作之前应当谨慎确认目标对象确实是可以被安全删除的内容。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值