无向图欧拉回路模板

判断无向图是否存在欧拉回路的算法流程:

(1)判断图是否连通

(1.1)如果不连通,则不存在欧拉回路,算法结束

(1.2)否则,转(2)

(2)判断各顶点度数是否为偶数

(2.1)如果存在某个顶点度数为奇数,则不存在欧拉回路,算法结束

(2.2)否则,存在欧拉回路


#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;
const int maxe=1e5+100;
const int maxv=1e3+100;
struct edge
{
    int to,next;
}e[maxe<<1];
int N,M,head[maxv],cnt,du[maxv],vis[maxv];
void init()
{
    memset(head,-1,sizeof(head));
    memset(du,0,sizeof(du));
    memset(vis,0,sizeof(vis));
    cnt=-1;
}
void add_edge(int u,int v)
{
    e[++cnt].to=v;
    e[cnt].next=head[u];
    head[u]=cnt;
}
void _add(int u,int v)
{
    add_edge(u,v);
    add_edge(v,u);
}
void dfs(int u)
{
    vis[u]=1;
    for(int i=head[u];i!=-1;i=e[i].next)
    {
        if(!vis[e[i].to])
            dfs(e[i].to);
    }
}
int euler()
{
    dfs(1);
    for(int i=1;i<=N;i++)
        if(!vis[i] || du[i]&1) return 0;
    return 1;
}

int main()
{
    while(~scanf("%d%d",&N,&M))
    {
        init();
        while(M--)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            du[u]++;
            du[v]++;
            _add(u,v);
        }
        printf("%d\n",euler()?1:0);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值