判断无向图是否存在欧拉回路的算法流程:
(1)判断图是否连通
(1.1)如果不连通,则不存在欧拉回路,算法结束
(1.2)否则,转(2)
(2)判断各顶点度数是否为偶数
(2.1)如果存在某个顶点度数为奇数,则不存在欧拉回路,算法结束
(2.2)否则,存在欧拉回路
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxe=1e5+100;
const int maxv=1e3+100;
struct edge
{
int to,next;
}e[maxe<<1];
int N,M,head[maxv],cnt,du[maxv],vis[maxv];
void init()
{
memset(head,-1,sizeof(head));
memset(du,0,sizeof(du));
memset(vis,0,sizeof(vis));
cnt=-1;
}
void add_edge(int u,int v)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
void _add(int u,int v)
{
add_edge(u,v);
add_edge(v,u);
}
void dfs(int u)
{
vis[u]=1;
for(int i=head[u];i!=-1;i=e[i].next)
{
if(!vis[e[i].to])
dfs(e[i].to);
}
}
int euler()
{
dfs(1);
for(int i=1;i<=N;i++)
if(!vis[i] || du[i]&1) return 0;
return 1;
}
int main()
{
while(~scanf("%d%d",&N,&M))
{
init();
while(M--)
{
int u,v;
scanf("%d%d",&u,&v);
du[u]++;
du[v]++;
_add(u,v);
}
printf("%d\n",euler()?1:0);
}
return 0;
}