Longest Common Substring HDU - 1403

题目链接

HDU-1403

题意

给定两个字符串,求最长公共子串的长度。

分析

先考虑简化问题:
求在一个串中至少出现两次的最长子串。
答案就是在后缀数组中相邻的后缀的最长公共前缀。因为在后缀数组中的起始位置相距越远,他们的最长公共前缀就越小。所以只要求出高度数组的最大值即可。

问题转化:
将两个字符串连接起来并在连接处添加一个字符’$’,形成新串s.这样求在s中至少出现两次的合适的最长子串就是a、b的最长公共子串。合适的要求是两个子串的起始位置要一个在a中,一个在b中。


才发现与poj2217是同样的题….

1091ms的代码

#include <cstdio>
#include <algorithm>
#include <string>
#include <iostream>
using namespace std;
#define rank ranka

string s;
const int maxn=2e5+100;
int n,k,rank[maxn],tmp[maxn],sa[maxn],lcp[maxn];
bool cmp(int i,int j)
{
    if(rank[i]!=rank[j]) return rank[i]<rank[j];
    else
    {
        int ri=i+k<=n?rank[i+k]:-1;
        int rj=j+k<=n?rank[j+k]:-1;
        return ri<rj;
    }
}
void get_sa()
{
    n=s.size();
    for(int i=0;i<=n;i++)
    {
        sa[i]=i;
        rank[i]=i<n?s[i]:-1;
    }
    for(k=1;k<=n;k*=2)
    {
        sort(sa,sa+n+1,cmp);
        tmp[sa[0]]=0;
        for(int i=1;i<=n;i++)
            tmp[sa[i]]=tmp[sa[i-1]]+(cmp(sa[i-1],sa[i])?1:0);
        for(int i=0;i<=n;i++) rank[i]=tmp[i];
    }

}
void get_lcp()
{
    for(int i=0;i<=n;i++) rank[sa[i]]=i;
    int h=0;
    lcp[0]=0;
    for(int i=0;i<n;i++)
    {
        if(h) h--;
        int j=sa[rank[i]-1];
        for(;i+h<n && j+h<n;h++)
            if(s[i+h]!=s[j+h]) break;
        lcp[rank[i]-1]=h;
    }
}
int main()
{
    string t;
    while(cin>>s>>t)
    {
        int len=s.size();
        s+="$"+t;
        get_sa();
        get_lcp();
        int ans=0;
        for(int i=0;i<n;i++)
        {
            if(sa[i]<len!=sa[i+1]<len)
                ans=max(ans,lcp[i]);
        }
        cout<<ans<<endl;
    }
    return 0;
}

参考博客

高度数组模板总结
后缀数组模板总结

阅读更多
个人分类: 后缀数组
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭