BZOJ 3343 教主的魔法 (分块)

题目

教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。

Input
第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作:
(1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。

Output
对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。

Sample Input
5 3

1 2 3 4 5

A 1 5 4

M 3 5 1

A 1 5 4

Sample Output
2

3

解题

分块,块内有序。
区间修改,类似线段树加个延迟标记就好了。
对于询问,不成块的暴力去找,成块的二分。

AC代码

qsc的代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1000006;
int n,m,num,belong[maxn],block,l[maxn],r[maxn],a[maxn],p[maxn];
int d[maxn];
//num分块的个数
//belong[i]表示i属于哪一块
//block表示块的大小
//l[i]表示i这块的左端点位置
//r[i]表示右端点位置

void build()
{
    block=sqrt(n);
    num=n/block;if(n%block)num++;
    for(int i=1;i<=num;i++)
        l[i]=(i-1)*block+1,r[i]=i*block;
    r[num]=n;
    for(int i=1;i<=n;i++)
        belong[i]=(i-1)/block+1;
    for(int i=1;i<=n;i++)
        d[i]=a[i];
    for(int i=1;i<=num;i++)
        sort(d+l[i],d+r[i]+1);
}
char op[5];
int A,B,C;
void update(int L,int R,int W)
{
    if(belong[L]==belong[R])
    {
        for(int i=l[belong[L]];i<=r[belong[R]];i++)
            a[i]+=p[belong[L]];
        p[belong[L]]=0;
        for(int i=L;i<=R;i++)
            a[i]+=W;
        for(int i=l[belong[L]];i<=r[belong[R]];i++)
            d[i]=a[i];
        sort(d+l[L],d+r[R]+1);
        return;
    }

    for(int i=l[belong[L]];i<=r[belong[L]];i++)
        a[i]+=p[belong[L]];
    p[belong[L]]=0;
    for(int i=L;i<=r[belong[L]];i++)
        a[i]+=W;
    for(int i=l[belong[L]];i<=r[belong[L]];i++)
        d[i]=a[i];
    sort(d+l[belong[L]],d+r[belong[L]]+1);

    for(int i=l[belong[R]];i<=r[belong[R]];i++)
        a[i]+=p[belong[R]];
    p[belong[R]]=0;
    for(int i=l[belong[R]];i<=R;i++)
        a[i]+=W;
    for(int i=l[belong[R]];i<=r[belong[R]];i++)
        d[i]=a[i];
    sort(d+l[belong[R]],d+r[belong[R]]+1);

    for(int i=belong[L]+1;i<belong[R];i++)
        p[i]+=W;
}
void ask(int L,int R,int W)
{
    int ans = 0;
    if(belong[L]==belong[R])
    {
        for(int i=L;i<=R;i++)
            if(a[i]+p[belong[i]]>=W)
                ans++;
        printf("%d\n",ans);
        return;
    }

    for(int i=L;i<=r[belong[L]];i++)
        if(a[i]+p[belong[i]]>=W)
            ans++;

    for(int i=l[belong[R]];i<=R;i++)
        if(a[i]+p[belong[i]]>=W)
            ans++;

    for(int i=belong[L]+1;i<belong[R];i++)
    {
        int ll=l[i],rr=r[i],Ans=0;
        while(ll<=rr)
        {
            int mid=(ll+rr)/2;
            if(d[mid]+p[i]>=W)rr=mid-1,Ans=r[i]-mid+1;
            else ll=mid+1;
        }
        ans+=Ans;
    }
    printf("%d\n",ans);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    build();
    for(int i=1;i<=m;i++)
    {
        scanf("%s%d%d%d",&op,&A,&B,&C);
        if(op[0]=='A')ask(A,B,C);
        else update(A,B,C);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值