AtCoder Regular Contest 102 C - Triangular Relationship(数论、同余)

题目链接

https://arc102.contest.atcoder.jp/tasks/arc102_a

题意

给定N和K。
求三元组(a,b,c)的个数。
三元组满足下面条件:
a、b、c的值都是不大于N的正整数。
a+b、b+c、a+c都是K的整数倍。

题解

根据数论同余的知识:
a mod K + b mod K = K mod K.
b mod K + c mod K = K mod K.
a mod K + c mod K = K mod K.
解得a=b=c=K/2 mod K(当K是偶数时有解)。或者a=b=c=K mod K。

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+7;

int a[maxn];//各个同余系的个数

int main()
{
    int n,k;
    while(~scanf("%d%d",&n,&k))
    {
        for(int i=1;i<=k;i++)
        {
            a[i]=n/k;
        }
        int r=n%k;
        for(int i=1;i<=r;i++) a[i]++;
        ll ans=0;

        ans+=(ll)a[k]*(ll)a[k]*(ll)a[k];
        if(k%2==0)
            ans+=(ll)a[k/2]*(ll)a[k/2]*(ll)a[k/2];
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值