2021-05-26

Queries Quality and Percentage

需求:编写一组 SQL 来查找每次查询的名称(query_name)、质量(quality) 和 劣质查询百分比(poor_query_percentage)。

质量(quality) 和劣质查询百分比(poor_query_percentage) 都应四舍五入到小数点后两位。

展示效果:

query_namequalitypoor_query_percentage
Dog2.5033.33
Cat0.6633.33
Create table If Not Exists 61_Queries (query_name varchar(30), result varchar(50), position int, rating int);
Truncate table 61_Queries;
insert into 61_Queries (query_name, result, position, rating) values ('Dog', 'Golden Retriever', 1, 5);
insert into 61_Queries (query_name, result, position, rating) values ('Dog', 'German Shepherd', 2, 5);
insert into 61_Queries (query_name, result, position, rating) values ('Dog', 'Mule', '200', 1);
insert into 61_Queries (query_name, result, position, rating) values ('Cat', 'Shirazi', 5, 2);
insert into 61_Queries (query_name, result, position, rating) values ('Cat', 'Siamese', 3, 3);
insert into 61_Queries (query_name, result, position, rating) values ('Cat', 'Sphynx', 7, 4);

最终SQL:

select
      query_name,
      round(avg(rating/position), 2) as quality ,
      round((count(if(rating<3, True, null)) / count(query_name)) *100 , 2) as poor_query_percentage
from
      61_Queries
group by 
      query_name
order by query_name desc;
2021-03-26 20:54:33,596 - Model - INFO - Epoch 1 (1/200): 2021-03-26 20:57:40,380 - Model - INFO - Train Instance Accuracy: 0.571037 2021-03-26 20:58:16,623 - Model - INFO - Test Instance Accuracy: 0.718528, Class Accuracy: 0.627357 2021-03-26 20:58:16,623 - Model - INFO - Best Instance Accuracy: 0.718528, Class Accuracy: 0.627357 2021-03-26 20:58:16,623 - Model - INFO - Save model... 2021-03-26 20:58:16,623 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 2021-03-26 20:58:16,698 - Model - INFO - Epoch 2 (2/200): 2021-03-26 21:01:26,685 - Model - INFO - Train Instance Accuracy: 0.727947 2021-03-26 21:02:03,642 - Model - INFO - Test Instance Accuracy: 0.790858, Class Accuracy: 0.702316 2021-03-26 21:02:03,642 - Model - INFO - Best Instance Accuracy: 0.790858, Class Accuracy: 0.702316 2021-03-26 21:02:03,642 - Model - INFO - Save model... 2021-03-26 21:02:03,643 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 2021-03-26 21:02:03,746 - Model - INFO - Epoch 3 (3/200): 2021-03-26 21:05:15,349 - Model - INFO - Train Instance Accuracy: 0.781606 2021-03-26 21:05:51,538 - Model - INFO - Test Instance Accuracy: 0.803641, Class Accuracy: 0.738575 2021-03-26 21:05:51,538 - Model - INFO - Best Instance Accuracy: 0.803641, Class Accuracy: 0.738575 2021-03-26 21:05:51,539 - Model - INFO - Save model... 2021-03-26 21:05:51,539 - Model - INFO - Saving at log/classification/pointnet2_msg_normals/checkpoints/best_model.pth 我有类似于这样的一段txt文件,请你帮我写一段代码来可视化这些训练结果
最新发布
02-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值