【算法导论13】回溯法—最小重量机器设计问题

13回溯法—最小重量机器设计问题

问题描述:
一个机器有n个零部件组成,每个零部件可以在 m 个不同供应商处获得,不同供应商 i 的不同零件 i 有两个参数,重量 wij,价格 cij,设计算法给出在价格不超过 c 时,最小重量的机器购买设计。

问题分析:
此问题属于类01背包问题,即在某个变量的限制条件下,另一个变量的最优值问题。
首先考虑问题输出,应该为每个零件的供货商编号,如果设为x[i],则此算法最终输出为x[i]的遍历,其中i为第i件零件。
现在考虑回溯法的解空间树,因为每个商品可以从m个供货商获得,则问题的解空间树是一棵m叉树,该树属于子集树而非排列树。
然后考虑剪枝条件,此问题中的限制条件为价格上限c,最小重量设bestw,则当 当前价格<c 且 当前重量 < bestw时,执行树的深度遍历,否则,执行回溯,因此本问题中包含两个剪枝条件。
最后是更新最优值,以及问题的解,本题中最优解是bestw,解集合是x[i]。递归出口处更新一种最优解,以及对应解集合。

算法设计:

#define n 7
#define c 5
int bestw,cp,cw;
int x[n + 1];
int p[n + 1][n + 1];
int w[n + 1][n + 1];
void traceback(int i) {
	if (i > n) {
		bestw = cw;
		for (int k = 1; k <= n; k++)
			printf("%d", x[k]);
	}
	for (int j = 1; j <= n; i++) {
		x[i] = j;
		cw += w[i][j];
		cp += p[i][j];
		if (cw < bestw && cp < c) {
			traceback(i + 1);
		}
		cw -= w[i][j];
		cp -= p[i][j];
	}
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值