《java算法系列》第三天打卡

版权声明:欢迎转载但需要附上原博客链接 https://blog.csdn.net/qq_37746725?assign_skin=skin-ink https://blog.csdn.net/qq_37746725/article/details/80686751

给定一个字符串,找出不含有重复字符的最长子串的长度。

示例:

给定 "abcabcbb" ,没有重复字符的最长子串是 "abc" ,那么长度就是3。

给定 "bbbbb" ,最长的子串就是 "b" ,长度是1。

给定 "pwwkew" ,最长子串是 "wke" ,长度是3。请注意答案必须是一个子串"pwke" 是 子序列  而不是子串

方法一:暴力法

思路

逐个检查所有的子字符串,看它是否不含有重复的字符。

算法

假设我们有一个函数 boolean allUnique(String substring) ,如果子字符串中的字符都是唯一的,它会返回true,否则会返回false。 我们可以遍历给定字符串 s 的所有可能的子字符串并调用函数 allUnique。 如果事实证明返回值为true,那么我们将会更新无重复字符子串的最大长度的答案。

现在让我们填补缺少的部分:

  1. 为了枚举给定字符串的所有子字符串,我们需要枚举它们开始和结束的索引。假设开始和结束的索引分别为 ii和 jj。那么我们有 0 \leq i \lt j \leq n0i<jn (这里的结束索引 jj 是按惯例排除的)。因此,使用 ii 从0到 n - 1n1 以及 jj 从 i+1i+1 到 nn 这两个嵌套的循环,我们可以枚举出 s 的所有子字符串。

  2. 要检查一个字符串是否有重复字符,我们可以使用集合。我们遍历字符串中的所有字符,并将它们逐个放入 set 中。在放置一个字符之前,我们检查该集合是否已经包含它。如果包含,我们会返回 false。循环结束后,我们返回 true

public class Solution {
    public int lengthOfLongestSubstring(String s) {
        int n = s.length();
        int ans = 0;
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j <= n; j++)
                if (allUnique(s, i, j)) ans = Math.max(ans, j - i);
        return ans;
    }


    public boolean allUnique(String s, int start, int end) {
        Set<Character> set = new HashSet<>();
        for (int i = start; i < end; i++) {
            Character ch = s.charAt(i);
            if (set.contains(ch)) return false;
            set.add(ch);
        }
        return true;
    }

}


复杂度分析

  • 时间复杂度:O(n^3)O(n3) 。

    要验证索引范围在 [i, j)[i,j) 内的字符是否都是唯一的,我们需要检查该范围中的所有字符。 因此,它将花费 O(j - i)O(ji) 的时间。

    对于给定的 i,对于所有 j \in [i+1, n]j[i+1,n] 所耗费的时间总和为:

    \sum_{i+1}^{n}O(j - i)i+1nO(ji)               因此,执行所有步骤耗去的时间总和为:

    O\left(\sum_{i = 0}^{n - 1}\left(\sum_{j = i + 1}^{n}(j - i)\right)\right) = O\left(\sum_{i = 0}^{n - 1}\frac{(1 + n - i)(n - i)}{2}\right) = O(n^3)O(i=0n1(j=i+1n(ji)))=O(i=0n12(1+ni)(ni))=O(n3)  空间复杂度:

  • O(min(n, m))O(min(n,m)),我们需要 O(k)O(k) 的空间来检查子字符串中是否有重复字符,其中 kk 表示 Set 的大小。而 Set 的大小取决于字符串 nn 的大小以及字符集/字母 mm 的大小

  • 方法二:滑动窗口

    算法

    暴力法非常简单。但它太慢了。那么我们该如何优化它呢?

    在暴力法中,我们会反复检查一个子字符串是否含有有重复的字符,但这是没有必要的。如果从索引 ii 到 j - 1j1之间的子字符串 s_{ij}sij 已经被检查为没有重复字符。我们只需要检查 s[j]s[j] 对应的字符是否已经存在于子字符串 s_{ij}sij中。

    要检查一个字符是否已经在子字符串中,我们可以检查整个子字符串,这将产生一个复杂度为 O(n^2)O(n2) 的算法,但我们可以做得更好。

    通过使用 HashSet 作为滑动窗口,我们可以用 O(1)O(1) 的时间来完成对字符是否在当前的子字符串中的检查。

    滑动窗口是数组/字符串问题中常用的抽象概念。 窗口通常是在数组/字符串中由开始和结束索引定义的一系列元素的集合,即 [i, j)[i,j)(左闭,右开)。而滑动窗口是可以将两个边界向某一方向“滑动”的窗口。例如,我们将 [i, j)[i,j)向右滑动 11 个元素,则它将变为 [i+1, j+1)[i+1,j+1)(左闭,右开)。

    回到我们的问题,我们使用 HashSet 将字符存储在当前窗口 [i, j)[i,j)(最初 j = ij=i)中。 然后我们向右侧滑动索引 jj,如果它不在 HashSet 中,我们会继续滑动 jj。直到 s[j] 已经存在于 HashSet 中。此时,我们找到的没有重复字符的最长子字符串将会以索引 ii 开头。如果我们对所有的 ii 这样做,就可以得到答案。

    public class Solution {
        public int lengthOfLongestSubstring(String s) {
            int n = s.length();
            Set<Character> set = new HashSet<>();
            int ans = 0, i = 0, j = 0;
            while (i < n && j < n) {
                // try to extend the range [i, j]
                if (!set.contains(s.charAt(j))){
                    set.add(s.charAt(j++));
                    ans = Math.max(ans, j - i);
                }
                else {
                    set.remove(s.charAt(i++));
                }
            }
            return ans;
        }
    }
  • 时间复杂度:

    • O(2n) = O(n)O(2n)=O(n),在最糟糕的情况下,每个字符将被 ii 和 jj 访问两次。

    • 空间复杂度:O(min(m, n))O(min(m,n)),与之前的方法相同。滑动窗口法需要 O(k)O(k) 的空间,其中 kk 表示 Set 的大小。而Set的大小取决于字符串 nn 的大小以及字符集/字母 mm 的大小。


方法三:优化的滑动窗口

上述的方法最多需要执行 2n 个步骤。事实上,它可以被进一步优化为仅需要 n 个步骤。我们可以定义字符到索引的映射,而不是使用集合来判断一个字符是否存在。 当我们找到重复的字符时,我们可以立即跳过该窗口。

也就是说,如果 s[j]s[j] 在 [i, j)[i,j) 范围内有与 j'j 重复的字符,我们不需要逐渐增加 ii 。 我们可以直接跳过 [ij][i,j′] 范围内的所有元素,并将 ii 变为 j' + 1j+1

Java(使用 HashMap)

public class Solution {
    public int lengthOfLongestSubstring(String s) {
        int n = s.length(), ans = 0;
        Map<Character, Integer> map = new HashMap<>(); // current index of character
        // try to extend the range [i, j]
        for (int j = 0, i = 0; j < n; j++) {
            if (map.containsKey(s.charAt(j))) {
                i = Math.max(map.get(s.charAt(j)), i);
            }
            ans = Math.max(ans, j - i + 1);
            map.put(s.charAt(j), j + 1);
        }
        return ans;
    }

}

Java(假设字符集为 ASCII 128)

以前的我们都没有对字符串 s 所使用的字符集进行假设。

当我们知道该字符集比较小的时侯,我们可以用一个整数数组作为直接访问表来替换 Map

常用的表如下所示:

  • int [26] 用于字母 ‘a’ - ‘z’或 ‘A’ - ‘Z’
  • int [128] 用于ASCII码
  • int [256] 用于扩展ASCII码
public class Solution {
    public int lengthOfLongestSubstring(String s) {
        int n = s.length(), ans = 0;
        int[] index = new int[128]; // current index of character
        // try to extend the range [i, j]
        for (int j = 0, i = 0; j < n; j++) {
            i = Math.max(index[s.charAt(j)], i);
            ans = Math.max(ans, j - i + 1);
            index[s.charAt(j)] = j + 1;
        }
        return ans;
    }

}

复杂度分析

  • 时间复杂度:O(n)O(n),索引 jj 将会迭代 nn 次。

  • 空间复杂度(HashMap):O(min(m, n))O(min(m,n)),与之前的方法相同。

  • 空间复杂度(Table):O(m)O(m)mm 是字符集的大小。



阅读更多

没有更多推荐了,返回首页