BZOJ3450: Tyvj1952 Easy

3450: Tyvj1952 Easy

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 616  Solved: 465
[Submit][Status][Discuss]

Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o。
比如ooxxxxooooxxx,分数就是2*2+4*4=4+16=20。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。
比如oo?xx就是一个可能的输入。
那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4
期望自然就是(4+9)/2 =6.5了

Input


第一行一个整数n,表示点击的个数
接下来一个字符串,每个字符都是ox?中的一个

Output

一行一个浮点数表示答案
四舍五入到小数点后4位
如果害怕精度跪建议用long double或者extended

Sample Input

4
????

Sample Output

4.1250

n<=300000
osu很好玩的哦
WJMZBMR技术还行(雾),x基本上很少呢

HINT

Source

我们都爱GYZ杯

分析:
 

根据期望的线性性,我们可以分别计算每个字符的期望贡献分值然后求和...

我们观察可以得到,如果在一个长为xx的oo串之后接上一个oo,那么答案加上了(x+1)2−x2=2x+1(x+1)2−x2=2x+1,也就是说,每个字符的贡献分值和它前面的期望oo串长度有关系...

所以每个字符的期望如下:

o:l[i]=l[i−1]+1,ans+=l[i−1]∗2+1

?:l[i]=(l[i−1]+1)/2,ans+=(l[i−1]∗2+1)/2

      ?就是可能是o也可能是x,所以期望是第一个,ans+是第二个

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 301000
using namespace std;
double l,ans;
char s[N];
int n;
int main()
{
//  freopen("test.in","r",stdin);
    int i,j,k;
    scanf("%d%s",&n,s+1);
    for(i=1;i<=n;i++)
    {
        if(s[i]=='x')l=0;
        else if(s[i]=='o')ans+=(++l)*2-1;
        else ans+=(l*2+1)*0.5,l=(l+1)*0.5;
    }
    printf("%.4lf\n",ans);

    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值