codeforces 807 E. Prairie Partition(贪心+思维)

博客介绍了如何利用贪心算法解决codeforces上的E. Prairie Partition问题。题目要求根据数的二进制表示,计算一串数字中可以用特定形式表示的数的数量。博主分享了思路,强调分别对2的倍数和非2倍数计数,然后贪心选择下一个2的倍数,以达到划分数的个数最少。详细解析和代码实现参考给定链接。
摘要由CSDN通过智能技术生成

题意:

已知每个数都能用x=1 + 2 + 4 + ... + 2k - 1 + r (k ≥ 0, 0 < r ≤ 2k)来表示,

给出一串数字问这串数字能有几个x表示。输出可能的长度。

思路:

https://www.cnblogs.com/TnT2333333/p/6828340.html?utm_source=itdadao&utm_medium=referral

这个题昨天没有做出来,今天看的大佬的博客理解的

大体思路是这个样子的

分别对2的倍数,与2倍数间隔间的数计数,结果个数最多为1的个数,

对每个个数,我们判断其是否可行。

我们贪心当前2的倍数之后一个的2的倍数,

使剩下来的2的倍数的数量和非2倍数数量和尽可能少,因为剩下的个数为最小的划分的数的个数。

代码:

#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
using namespace std;
typedef long long ll;
const int M = 1e5 + 10;
ll a[M];
vector<int>equ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值