- 博客(14)
- 收藏
- 关注
原创 【deeplearning.ai】Course 1-Week2:具有神经网络思维的Logistic回归
一、逻辑回归模型 二、算法流程定义模型结构(例如输入特征的数量)初始化模型的参数循环:(1) 计算当前损失(正向传播)(2)计算当前梯度(反向传播)(3) 更新参数(梯度下降)import h5pyimport numpy as npimport matplotlib.pyplot as plt三、代码实现1.载入数据train_dataset=h5py.File(r'C:\Users\Lenovo\Desktop\datasets\train_catvnoncat.h5','
2020-09-22 21:23:45
455
原创 skimage库(一)
一、segmentation1.skimage.segmentation.felzenszwalbskimage.segmentation.felzenszwalb(image, scale=1, sigma=0.8, min_size=20, multichannel=True)(1)作用: 计算Felsenszwalb的基于有效图的图像分割。(2)参数:参数说明imagendarray 输入图像:(宽度,高度,3)或(宽度,高度)。scalefloat 设置
2020-09-18 21:33:08
2595
原创 numpy库(二)
一、numpy.apply_along_axis()numpy.apply_along_axis(func, axis, arr, *args, **kwargs)1.功能:将arr数组的每一个元素经过func函数变换形成的一个新数组2.参数:axis表示函数func对arr是作用于行还是列,axis=0:列,axis=1:行...
2020-09-18 21:32:41
173
原创 目标检测(一)——R-CNN以及Selective Search实现
一、主要内容:给定一张输入图片,从图片中提取 2000 个类别独立的候选区域。对于每个区域利用 CNN 抽取一个固定长度的特征向量。再对每个区域利用SVM 进行目标分类。使用回归器精细修正候选框位置。二、提取候选区域——Selective Search 选择性搜索算法...
2020-09-18 21:28:37
452
原创 Coursera吴恩达机器学习(七)——Exercise7-k-means聚类算法
一、层次聚类聚合聚类算法输入:n个样本组成的样本聚合及样本之间的距离输出:对样本集合的一个层次化聚类(1)计算n个样本两两之间的欧氏距离{dij}\{d_{ij}\}{dij},记作矩阵D=[dij]m×nD=[d_{ij}]_{m\times n}D=[dij]m×n(2)构造n个类,每个类只包含一个样本。(3)合并类间距离最小的两个类,其中最短距离为类间距离,构建一个新类。(4)计算新类与当前各类的距离,若类的个数为1,终止计算,否则回到步骤(3)k-means聚类算法输入:n个
2020-09-16 15:40:33
740
原创 python(一)——读取图片的几种方式以及图像宽和高
1.PILfrom PIL import Imageimage_PIL=Image.open('G:\Coursera-ML-AndrewNg-Notes\code\ex7-kmeans and PCA\data\\bird_small.png')image_PIL.show()print('输出类型:{}'.format(type(image_PIL)))print('图片的尺寸:{}'.format(image_PIL.size))输出类型:<class ‘PIL.PngImagePl
2020-09-16 11:06:05
3650
原创 Coursera吴恩达机器学习(六)——Exercise6-支持向量机(SVM)
文章目录一、基本概念1.分离超平面2.函数间隔3.几何间隔4.几何间隔与函数间隔关系5.间隔最大化6.软间隔最大化7.高斯核函数二、线性SVM三、高斯核函数四.寻找最优参数1.手动搜索2.sklearn GridSearchCV (网格搜索)五、垃圾邮件检测1.SVM2.逻辑回归一、基本概念1.分离超平面wTx⃗+b=0w^T\vec{x}+b=0wTx+b=0(1)在超平面wTx⃗+b=0w^T\vec{x}+b=0wTx+b=0确定的情况下,∣wTx⃗+b∣|w^T\vec{x}+b|∣wTx+b
2020-09-01 15:39:51
394
原创 Coursera吴恩达机器学习(五)——Exercise5-偏差与方差
文章目录一.数据1.加载数据2.处理数据二.定义代价函数三.定义梯度四.拟合数据1.线性回归(1)拟合曲线(2)学习曲线2.多项式回归(1)代价函数误差与多项式次数(3)不同λ\lambdaλ的学习曲线λ=0\lambda=0λ=0λ=1\lambda=1λ=1λ=100\lambda=100λ=100(4)选择合适的λ\lambdaλ一.数据import numpy as npimport matplotlib.pyplot as pltfrom scipy.io import loadmati
2020-08-16 11:07:09
623
原创 Coursera吴恩达机器学习(四)——Exercise4-神经网络的反向传播算法
1.加载并处理数据import numpy as npimport matplotlib.pyplot as pltimport matplotlibfrom scipy.io import loadmatimport scipy.optimize as optfrom sklearn.metrics import classification_report def load_data(path,transpose=True): data=loadmat(path) X=dat
2020-08-12 10:52:55
423
原创 Coursera吴恩达机器学习(三)——Exercise3-多分类逻辑回归、前馈神经网络
文章目录一、多分类逻辑回归1.载入数据2.画图3.处理数据4.训练一维模型5.训练k维模型二、前馈神经网络1.载入数据和权重2.每层网络计算3.预测4.评估一、多分类逻辑回归import matplotlib.pyplot as pltimport matplotlibimport numpy as npimport scipy.optimize as optfrom scipy.io import loadmatfrom sklearn.metrics import classificati
2020-08-07 16:35:58
413
原创 Coursera吴恩达机器学习(二)——Exercise2-逻辑回归、正则化
一.逻辑回归import pandas as pdimport numpy as npimport matplotlib.pyplot as plt1.读取数据:path='H:\Coursera-ML-AndrewNg-Notes\code\ex2-logistic regression\ex2data1.txt'data=pd.read_csv(path,header=None,names=['Exam 1','Exam 2','Admitted'])data.head()部分数据截图:
2020-08-03 15:18:25
496
原创 Coursera吴恩达机器学习(一)——Exercise1-线性回归
1.单变量线性回归import numpy as npimport pandas as pdimport matplotlib.pyplot as pltpath='H:\Coursera-ML-AndrewNg-Notes\code\ex1-linear regression\ex1data1.txt'data=pd.read_csv(path,header=None,names=['Population', 'Profit'])data.insert(0,'ones',1)此时的部分数据:
2020-07-27 17:36:08
428
原创 numpy库(一)——数组、矩阵
一维数组:x=np.array([1,2,3])print(x,x.shape)#结果#[1 2 3] (3,)行向量:x1=np.array([[1,2,3]])#两层[]print(x1,x1.shape)#结果#[[1 2 3]] (1, 3)列向量:x2=np.array([[1],[2],[3]])print(x2,x2.shape)#结果#[[1] [2] [3]] (3, 1)一维数组既不是行向量,也不是列向量行向量、列向量都是二维数组...
2020-07-17 22:00:47
551
原创 keras入门(一)——迁移VGG16模型训练mnist数据集实现手写数字识别
作为一个刚入门keras的小白,实战的时候参照网上修改VGG16模型训练mnist数据集实现手写数字识别,掉进了不少坑,走了不少弯路,也学习了很多知识。下面跟大家分享一下,有问题欢迎大家评论指出~整个程序参考了一下文档和视频:[人工智能深度学习第21讲:迁移学习](https://www.bilibili.com/read/cv2712205?share_medium=android&...
2020-03-20 13:23:06
3497
5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人