在上一讲中,了解了云虚拟机的大致构架和组成,实际体验了在云上建立第一台虚拟服务器的完整流程,还介绍了在创建过程中,你所需要注意的若干重要选项及其含义。
而在这些选项之中,最重要的恐怕就是虚拟机的规格了,因为它直接决定了虚拟机的计算能力和特点,同时,也会深刻地影响使用成本,是你在选型时需要考虑的重点问题。
很多同学在实际工作中,都会遇到这样的困惑:公司要上云,或者因为业务发展需要采购新的云服务器,但是在查看某云厂商的官网时,发现可选择的虚拟机型号列表很长,有点儿眼花缭乱。
那么,不同种类的虚拟机到底有什么区别呢?在选择时又应该从哪儿入手呢?
今天,我们就来详细聊聊这个话题。
建立对虚拟机配置的多维认知
完整形容一个虚拟机的核心配置和能力,需要从多个角度来入手和描述。弄懂了这些重要维度的含义,你才能够准确理解一个虚拟机的性能预期和使用场景,从而作出正确的型号选择。这里并非只有决定 CPU 核数和内存大小这么简单。那么,主要是哪几个维度呢?
第一个维度,就是虚拟机的“类型”,或者说“系列”。
这是一个非常重要的概念,它是指具有同一类设计目的或性能特点的虚拟机类别。
一般来讲,云厂商会提供通用均衡型、计算密集型、内存优化型、图形计算型等常见的虚拟机类型。这些类型对应着硬件资源的某种合理配比或针对性强化,方便你在面向不同场景时,选择最合适的那个型号。
而 vCPU 数和内存大小(按 GB 计算)的比例,是决定和区分虚拟机类型的重要指征之一。
通用均衡型的比例通常是 1:4,如 2 核 8G,这是一个经典的搭配,可用于建站、应用服务等各种常见负载,比如作为官网和企业应用程序的后端服务器等。如果你对未来工作负载的特征还没有经验和把握,那你也可以先使用通用型实例,等程序运行一段时间后再根据资源占用情况按需调整。
如果 vCPU 和内存比是 1:2 甚至 1:1,那就是计算密集型的范畴,它可以用于进行科学计算、视频编码、代码编译等计算密集型负载。
比例为 1:8 及以上,一般就会被归入内存优化型了,比如 8 核 64G 的搭配,它在数据库、缓存服务、大数据分析等应用场景较为常见。
图形计算型很好理解,就是带有 GPU 能力的虚拟机,一般用于机器学习和深度学习模型的训练和推理。随着 AI 的火热,这类机器也越来越多地出现在各种研发和生产环境中。
在主流云计算平台上,常常使用字母缩写来表达虚拟机系列。比如,AWS 的通用型是 M 系列,阿里云的内存优化型为 R 系列