医学影像处理(二)——分类的性能度量指标

        从医学的角度来讲,大家关注的性能指标应该是两个:特异性和敏感性,敏感度其实指的是一种查全率,是不是把所有的结节都找到了。特异性是指假阳性的比例。在某种意义上,这是两个矛盾的指标,如果把一个指标调到最大,那肯定另一个指标的表现就会变得很差,大家都希望这两个指标能够达到一个最好的平衡。

        为简化讨论,本文均以“二分类问题”为例,即对影像判断的结果只有两种:要么是阳性(positive),要么是阴性(negative)。这样的简化也符合大部分医学影像识别问题的实际情况。

        二分类问题,如果不能被AI模型完美解决,那么模型预测结果的错误大概有两类:一类是把阴性误报为阳性(把没病说成了有病),另一类是把该报告的阳性漏掉(即把有病看成了没病)。优化模型的过程,是同时减少这两类错误的过程,至少是在两类错误之间进行适当折中的过程。不顾一类错误,而单纯减少另一类错误,一般是没有意义的。比如,我们为了不犯“漏”的错误,最简单的办法就是把所有的图像都报告称阳性(有病)。

1、 常用术语解释 

在二分类的条件下,AI的预测结果存在下列4种情形:

                                                              

  •  真阳性(True Positive,TP):预测为阳性,实际为阳性的样本数;
  • 真阴性(True Negative,TN):预测为阴性,实际为阴性的样本数;
  • 假阳性(False Positive,FP):预测为阳性,实际为阴性的样本数;
  • 假阴性(False Negative,FN):预测为阴性,实际为阳性的样本数。                                

        其中,FP也称为误报(False alarm),FN也称为漏报(miss detection)。

        上文4种名称中的“真”(True)和“假”(False)表示预测结果是否正确。名称中的“阳性”(Positive)和“阴性”(Negative)表示预测结果。例如,对于一个特定的测试样本,真阳性的含义为“AI预测正确,且AI预测结果为阳性”,那么就可以推断到:预测为阳性,实际结果为阳性。假阴性的含义为“AI错判为阴性”,那么就可以推断到:预测为阴性,实际结果为阴性。

        通常我们会用一个矩阵来展示预测结果和实际情况的差异,称为混淆矩阵 (confusion matrix)。二分类的混淆矩阵为2✖️2的,见表1。三分类的问题如下,比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:

                                                    

                                                                            一个三类问题的混淆矩阵

利用混淆矩阵可以充分理解分类中的错误了。如果混淆矩阵中的非对角线元素均为0,就会得到一个近乎完美的分类器。

        为表述方便起见

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值