牛客练习赛 27

比赛链接:点我

A 纸牌,
链接:https://www.nowcoder.com/acm/contest/188/A
来源:牛客网

题目描述
小w想和你van纸牌
小w有两张纸牌,两张纸牌上都有相同的正整数n
每一轮一张纸牌上的数都可以减去小于等于另外一张纸牌上的数的数
每一轮只能操作和上轮不同的纸牌
小w想知道三轮之后两纸牌上数字之和的最小值
注意,不能减为负数
输入描述:
第一行1个正整数n。
输出描述:
一行一个整数
表示三轮之后两纸牌上数字和的最小值

和是固定的,在3次之内尽量多减数。 开始两次减去另一个数的一半,最后一次全部减掉。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main(){
	int n;
	scanf("%d",&n);
	ll sum=0;
	sum=n*2-(n-n/2)-(n/2*2);
	printf("%lld",sum);
} 

C 水图
链接:https://www.nowcoder.com/acm/contest/188/C
来源:牛客网

题目描述
小w不会离散数学,所以她van的图论游戏是送分的
小w有一张n个点n-1条边的无向联通图,每个点编号为1~n,每条边都有一个长度
小w现在在点x上
她想知道从点x出发经过每个点至少一次,最少需要走多少路
输入描述:
第一行两个整数 n,x,代表点数,和小w所处的位置
第二到第n行,每行三个整数 u,v,w,表示u和v之间有一条长为w的道路
输出描述:
一个数表示答案

链式前向星建图,深搜找出最长路,用整个图长的两倍减去找到的最长路。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=50000+100;
int cost,cnt,st,x,y,z,n;
struct Edge{
	int to;
	int next;
	ll w;
}edge[N<<1];
int head[N];
ll sum,mx;
void addedge(int u,int v,int cost){
	edge[++cnt].to=v;
	edge[cnt].w=cost;
	edge[cnt].next=head[u];
	head[u]=cnt;
}

void dfs(int x,int fa, ll ans){
	mx=max(mx,ans);
    for (int i=head[x];i;i=edge[i].next) {
        int v=edge[i].to;
        if (v==fa) continue;
        dfs(v,x,ans+edge[i].w);
    }
}
int main(){
	scanf("%d%d",&n,&st);
    for (int i=1;i<n;i++) {
        scanf("%d%d%d",&x,&y,&z);
        addedge(x,y,z); addedge(y,x,z);
        sum+=z;
    }
    dfs(st,0,0);
   // printf("%lld %lld\n",sum,mx);
    printf("%lld\n",sum*2-mx);
    return 0;
}

链接:https://www.nowcoder.com/acm/contest/188/D
来源:牛客网

题目描述
小w很生气
小w有一个长为n的括号序列
愤怒小w想把这个括号序列分为两个括号序列
小w想让分为的这两个括号序列同时合法
小w想知道一共有多少种划分方案
(划分的意思是划分为两个子序列)
注意两个序列是 A,B 和 两个序列是B,A 算两种方案,也就是同一位置位于不同划分为方案不同
输入描述:
第一行一正整数n
第二行,一串长为n的括号序列
输出描述:
一个正整数
表示对方案数对2333取mod后的方案数

dp[i][j]表示前i个字符,左括号比右括号多j个的情况时的方案数。
做状态转移时,下一个字符可以加到前半部分序列,也可以加到后半部分序列,如果j<0就不合法,因为前面右括号比左括号多是不行的,如果选出的一部分匹配,那么另一部分也一定匹配。

#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int N=10000+5; 
const int mod=2333;
char str[N];
int a[N],sum[N]; 
int dp[2][N];
int main(){
	int n;
	scanf("%d",&n);
	scanf("%s",str+1);
	for(int i=1;i<=n;i++){  //预处理  
		if(str[i]=='('){
			a[i]=1;
		}
		else if(str[i]==')'){
			a[i]=-1;
		}
	}
	
	dp[0][0]=1;
	for(int i=1;i<=n;i++){
		int flag=i&1;//简便判断奇偶 
		
		sum[i]=sum[i-1]+a[i];//前缀
		if(sum[i]<0){
			puts("0");
		} 
		
	    mem(dp[flag],0);//保存上一状态即可
	    for(int j=0;j<=n;j++){
	    	if(j+a[i]>=0){
	    		dp[flag][j+a[i]]+=dp[!flag][j];//滚一维 
	    		dp[flag][j+a[i]]%=mod;
			} 
			if(sum[i]>=j){
				dp[flag][j]+=dp[!flag][j];
				dp[flag][j]%=mod;
			}
		}
		
	}
	printf("%d\n",dp[n&1][0]);
} 


        
   

### 关于牛客练习赛14 B题的解析 目前未找到直接针对牛客练习赛14 B题的具体题解或比赛经验。然而,可以通过分析类似的题目以及常见的算法竞赛技巧来推测可能的解决方案。 #### 类似问题的解决思路 在算法竞赛中,B类题目通常涉及基础数据结构的应用或者简单的数学推导。以下是几种常见类型的处理方式: 1. **字符串操作** 若该题涉及到字符串处理,则可以利用C++中的`std::string`库函数[^2],例如查找子串、替换字符等操作。 2. **数组与序列** 对于数组或序列的操作,动态规划(Dynamic Programming, DP)是一种常用方法。通过定义状态转移方程,逐步解决问题。例如,在某些情况下,可以用滚动数组优化空间复杂度[^3]。 3. **图论模型** 如果题目描述中有提到节点之间的关系,可能是图论问题。此时可采用广度优先搜索(BFS)、深度优先搜索(DFS),甚至最短路径算法如Dijkstra或Floyd-Warshall来建模并求解[^1]。 4. **模拟与暴力枚举** 当面对简单逻辑判断或多步运算时,“模拟”成为一种有效手段。即按照题目给定规则一步步实现程序流程,虽然时间效率未必最优,但对于小规模输入非常适用[^5]。 下面提供一段伪代码框架供参考: ```cpp #include <iostream> using namespace std; int main(){ int testCase; cin >> testCase; while(testCase--){ // 输入处理... // 解决方案核心部分 // 输出结果 } } ``` #### 提升竞赛表现的经验分享 为了更好地准备此类赛事,建议采取以下策略: - 定期参与线上平台举办的各类比赛积累实战经历; - 复盘每次赛后官方发布的详解文档学习新知; - 加强基础知识巩固的同时拓宽思维边界尝试不同领域挑战项目; ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值