java分配根据百分百获取集合数据随机、有序等

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.IntStream;  
public class DataDistributionExample {

    public static void main(String[] args) {
        // 假设这是原始数据集合,元素是任意类型
        List<String> dataList = new ArrayList<>();
        for (int i = 0; i < 100; i++) {
            dataList.add("User" + i);
        }

        // 按照小明(30%)、小红(40%)、小张(30%)的比例分配
        Map<String, Double> distributionMap = new HashMap<>();
        distributionMap.put("小明", 0.3);
        distributionMap.put("小红", 0.4);
        distributionMap.put("小张", 0.3);

        Collections.shuffle(dataList); // 首先对数据进行随机打乱

        int totalDataCount = dataList.size();
        int countForXiaoming = (int) Math.round(totalDataCount * distributionMap.get("小明"));
        int countForXiaohong = (int) Math.round(totalDataCount * distributionMap.get("小红"));

        List<String> resultForXiaoming = new ArrayList<>();
        List<String> resultForXiaohong = new ArrayList<>();
        List<String> resultForXiaozhang = new ArrayList<>();

        for (int i = 0; i < totalDataCount; i++) {
            if (i < countForXiaoming) {
                resultForXiaoming.add(dataList.remove(0));
            } else if (i < countForXiaoming + countForXiaohong) {
                resultForXiaohong.add(dataList.remove(0));
            } else {
                resultForXiaozhang.add(dataList.remove(0));
            }
        }

        System.out.println("小明的数据: " + resultForXiaoming);
        System.out.println("小红的数据: " + resultForXiaohong);
        System.out.println("小张的数据: " + resultForXiaozhang);
        
        
        System.out.println("================================");
        t001();
        
    }
    
    
    static void t001() {
    	// 原始数据列表,包含1到100的整数
        List<Integer> originalList = IntStream.rangeClosed(1, 100).boxed().collect(Collectors.toList());

        // 小明、张工对应的数字范围
        int xiaomingEnd = (int) (originalList.size() * 0.3);
        int zhanggongEnd = xiaomingEnd + (int) (originalList.size() * 0.3);

        // 使用HashSet存储已抽取的元素以避免重复
        Set<Integer> sampledSet = new HashSet<>();

        // 抽取小明的数据
        List<Integer> xiaomingData = originalList.subList(0, xiaomingEnd)
                .stream()
                .distinct()
                .filter(sampledSet::add)
                .collect(Collectors.toList());

        // 抽取张工的数据
        List<Integer> zhanggongData = originalList.subList(xiaomingEnd, zhanggongEnd)
                .stream()
                .distinct()
                .filter(sampledSet::add)
                .collect(Collectors.toList());

        // 抽取其他人的数据,由于这里每个人对应一个数字,所以直接从剩余部分中获取
        List<Integer> othersData = originalList.subList(zhanggongEnd, originalList.size())
                .stream()
                .distinct()
                .filter(sampledSet::add)
                .collect(Collectors.toList());
        
        
        System.out.println(xiaomingData+"\n"+zhanggongData+"\n"+othersData);

    }
}

int totalData = 5;
int user1Ratio = 10;
int user2Ratio = 30;
int user3Ratio = 60;

// 计算每个用户应得的数据量
int user1DataCount = (int) ((double) user1Ratio / (user1Ratio + user2Ratio + user3Ratio) * totalData);
int user2DataCount = (int) ((double) user2Ratio / (user1Ratio + user2Ratio + user3Ratio) * totalData);
int user3DataCount = totalData - user1DataCount - user2DataCount;

// 创建一个包含1到100的数组,表示100条数据
List<Integer> dataList = IntStream.rangeClosed(1, totalData).boxed().collect(Collectors.toList());

// 对数组进行随机排序
Collections.shuffle(dataList, new Random());

// 按照用户应得数据量的顺序将数据分配给用户
Map<String, List<Integer>> userDataMap = new HashMap<>();
userDataMap.put("User1", dataList.stream().limit(user1DataCount).collect(Collectors.toList()));
userDataMap.put("User2", dataList.stream().skip(user1DataCount).limit(user2DataCount).collect(Collectors.toList()));
userDataMap.put("User3", dataList.stream().skip(user1DataCount + user2DataCount).collect(Collectors.toList()));

// 输出分配结果
System.out.println("User1: " + userDataMap.get("User1"));
System.out.println("User2: " + userDataMap.get("User2"));
System.out.println("User3: " + userDataMap.get("User3"));
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有知识的山巅

文章对你有用,学到了知识。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值