Leetcode 126. Word Ladder II (python+cpp)

这篇博客详细解析了LeetCode 126题的解决方案,通过BFS+回溯法寻找单词阶梯的最短路径。作者首先介绍了从beginWord开始的BFS方法,然后优化为从endWord出发,最后通过建立邻接矩阵加速,同时在BFS过程中记录路径。在回溯过程中,从endWord开始还原路径,确保路径的正确性和最短性。博客提供了Python和C++两种实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode 126. Word Ladder II

题目

在这里插入图片描述

解析

这道题目是接127的一道follow up。127是让你计算最短路径的长度,而这边则要让你大音每条最短路径。这道题目有很多的解法,每个人的思路也不一样,但是为了跟127的解法保持一致性呢,我这边采用一种比较初级的方法:BFS+backtracking。

最初级的版本是这样的,利用BFS求出最短路径,从beginWord开始,正向寻找最短的路径,寻找路径依旧使用之前的搜索方式。这样做会超时,39个test case通过了21个。代码如下:

class Solution:
    def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:
        if endWord not in wordList:
            return []
        
        def backtracking(curr_step,min_step,path,word):
            if curr_step>min_step:
                return
            if word == endWord and curr_step==min_step:
                ans.append(path[:])
            for i in range(len(word)):
                for nei in neighbors[word[:i]+'*'+word[i+1:]]:
                    if nei not in visited_path:
                        #visited_path.add(nei)
                        path.append(nei)
                        backtracking(curr_step+1,min_step,path,nei)
                        path.pop()
                        #visited_path.remove(nei)
            
        
        neighbors = collections.defaultdict(list)
        for word in wordList:
            for i in range(len(word)):
                neighbors[word[:i]+'*'+word[i+1:]].append(word)
        
        q = collections.deque()
        visited = set()
        q.append((beginWord,1))
        visited.add(beginWord)
        
        
        while q:
            word,step = q.popleft()
            if word==endWord:
                #min_step = step
                break
            for i in range(len(word)):
                for nei in neighbors[word[:i]+'*'+word[i+1:]]:
                    if nei not in visited:
                        q.append((nei,step+1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值