Leetcode 126. Word Ladder II (python+cpp)

这篇博客详细解析了LeetCode 126题的解决方案,通过BFS+回溯法寻找单词阶梯的最短路径。作者首先介绍了从beginWord开始的BFS方法,然后优化为从endWord出发,最后通过建立邻接矩阵加速,同时在BFS过程中记录路径。在回溯过程中,从endWord开始还原路径,确保路径的正确性和最短性。博客提供了Python和C++两种实现代码。
摘要由CSDN通过智能技术生成

Leetcode 126. Word Ladder II

题目

在这里插入图片描述

解析

这道题目是接127的一道follow up。127是让你计算最短路径的长度,而这边则要让你大音每条最短路径。这道题目有很多的解法,每个人的思路也不一样,但是为了跟127的解法保持一致性呢,我这边采用一种比较初级的方法:BFS+backtracking。

最初级的版本是这样的,利用BFS求出最短路径,从beginWord开始,正向寻找最短的路径,寻找路径依旧使用之前的搜索方式。这样做会超时,39个test case通过了21个。代码如下:

class Solution:
    def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]:
        if endWord not in wordList:
            return []
        
        def backtracking(curr_step,min_step,path,word):
            if curr_step>min_step:
                return
            if word == endWord and curr_step==min_step:
                ans.append(path[:])
            for i in range(len(word)):
                for nei in neighbors[word[:i]+'*'+word[i+1:]]:
                    if nei not in visited_path:
                        #visited_path.add(nei)
                        path.append(nei)
                        backtracking(curr_step+1,min_step,path,nei)
                        path.pop()
                        #visited_path.remove(nei)
            
        
        neighbors = collections.defaultdict(list)
        for word in wordList:
            for i in range(len(word)):
                neighbors[word[:i]+'*'+word[i+1:]].append(word)
        
        q = collections.deque()
        visited = set()
        q.append((beginWord,1))
        visited.add(beginWord)
        
        
        while q:
            word,step = q.popleft()
            if word==endWord:
                #min_step = step
                break
            for i in range(len(word)):
                for nei in neighbors[word[:i]+'*'+word[i+1:]]:
                    if nei not in visited:
                        q.append((nei,step+1)
你好!对于LeetCode上的问题994.腐烂的橘子,你可以使用Python来解决。下面是一个示例代码: ```python from collections import deque def orangesRotting(grid): # 记录网格的行数和列数 row, col = len(grid), len(grid[0]) # 定义四个方向:上、下、左、右 directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] # 使用队列来保存腐烂的橘子的位置 queue = deque() # 记录新鲜橘子的数量 fresh_count = 0 # 遍历整个网格,初始化队列和新鲜橘子的数量 for i in range(row): for j in range(col): if grid[i][j] == 2: # 腐烂的橘子 queue.append((i, j)) elif grid[i][j] == 1: # 新鲜橘子 fresh_count += 1 # 如果新鲜橘子的数量为0,直接返回0 if fresh_count == 0: return 0 # 初始化分钟数 minutes = 0 # 开始进行BFS,直到队列为空 while queue: # 记录当前分钟数下,队列中的元素数量 size = len(queue) # 遍历当前分钟数下的所有腐烂的橘子 for _ in range(size): x, y = queue.popleft() # 遍历四个方向 for dx, dy in directions: nx, ny = x + dx, y + dy # 判断新位置是否在网格内,并且是新鲜橘子 if 0 <= nx < row and 0 <= ny < col and grid[nx][ny] == 1: # 将新鲜橘子变为腐烂状态 grid[nx][ny] = 2 # 将新鲜橘子的位置加入队列 queue.append((nx, ny)) # 新鲜橘子的数量减1 fresh_count -= 1 # 如果当前分钟数下,没有新鲜橘子了,结束循环 if fresh_count == 0: break # 每遍历完一层,分钟数加1 minutes += 1 # 如果最后还有新鲜橘子,返回-1,否则返回分钟数 return -1 if fresh_count > 0 else minutes ``` 你可以将给定的网格作为参数传递给`orangesRotting`函数来测试它。请注意,该代码使用了BFS算法来遍历橘子,并计算腐烂的分钟数。希望能对你有所帮助!如果有任何疑问,请随时问我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值